Принцип работы радиосвязи

Радио (лат.radio- излучаю, испускаю лучи radius- луч) - разновидность беспроводной связи, при которой в качестве носителя сигнала используются радиоволны, свободно распространяемые в пространстве.

Принцип работы
Передача происходит следующим образом: на передающей стороне формируется сигнал с требуемыми характеристиками (частота и амплитуда сигнала). Далее передаваемыйсигналмодулируетболее высокочастотное колебание (несущее). Полученный модулированный сигнал излучается антенной в пространство. На приёмной стороне радиоволны наводят модулированный сигнал в антенне, после чего он демодулируется (детектируется) и фильтруется ФНЧ (избавляясь тем самым от высокочастотной составляющей- несущей).Полученный модулированный сигнал излучается антенной в пространство.
На приёмной стороне радиоволны наводят модулированный сигнал в антенне, после чего он демодулируется (детектируется) и фильтруется ФНЧ (избавляясь тем самым от высокочастотной составляющей- несущей).). Таким образом, происходит извлечение полезного сигнала. Получаемый сигнал может несколько отличаться от передаваемого передатчиком (искажения вследствие помех и наводок).

Частотные диапазоны
Частотная сетка, используемая в радиосвязи, условно разбита на диапазоны:

  • Длинные волны(ДВ)- f = 150-450 кГц (л = 2000-670 м)
  • Средние волны(СВ)- f = 500-1600 кГц (л = 600-190 м)
  • Короткие волны(КВ)- f = 3-30 МГц (л = 100-10 м)
  • Ультракороткие волны(УКВ)- f = 30 МГц- 300 МГц (л = 10-1 м)
  • Высокие частоты (ВЧ- сантиметровый диапазон)- f = 300 МГц- 3 ГГц (л = 1-0,1 м)
  • Крайне высокие частоты (КВЧ- миллиметровый диапазон)- f = 3 ГГц- 30 ГГц (л = 0,1-0,01 м)
  • Гипервысокие частоты (ГВЧ- микрометровый диапазон)- f = 30 ГГц- 300 ГГц (л = 0,01-0,001 м)

В зависимости от диапазона радиоволны имеют свои особенности и законы распространения:

  • ДВ сильно поглощаются ионосферой, основное значение имеют приземные волны, которые распространяются, огибая землю. Их интенсивность по мере удаления от передатчика уменьшается сравнительно быстро.
  • СВ сильно поглощаются ионосферой днём, и район действия определяется приземной волной, вечером хорошо отражаются от ионосферы и район действия определяется отражённой волной.
  • КВ распространяются исключительно посредством отражения ионосферой, поэтому вокруг передатчика существует т.н.зона радиомолчания. Днём лучше распространяются более короткие волны (30 МГц), ночью- более длинные (3 МГц). Короткие волны могут распространяться на большиме расстояния при малой мощности передатчика.
  • УКВ распространяются прямолинейно и, как правило, не отражаются ионосферой. Легко огибают препятствия и имеют высокую проникающую способность.
  • ВЧ не огибают препятствия, распространяются в пределах прямой видимости. Используются в WiFi, сотовой связи ит.д.
  • КВЧ не огибают препятствия, отражаются большинством препятствий, распространяются в пределах прямой видимости. Используются для спутниковой связи.
  • Гипервысокие частоты не огибают препятствия, отражаются подобно свету, распространяются в пределах прямой видимости. Использование ограничено.

Распространение радиоволн
Радиоволны распространяются в пустоте и в атмосфере; земная твердь и вода для них непрозрачны. Однако, благодаря эффектам дифракции и отражения, возможна связь между точками земной поверхности, не имеющими прямой видимости (в частности, находящимися на большом расстоянии).
Распространение радиоволн от источника к приёмнику может происходить несколькими путями одновременно. Такое распространение называетсямноголучёвостью. Вследствие многолучёвости и изменений параметров среды, возникаютзамирания(англ.fading)- изменение уровня принимаемого сигнала во времени. При многолучёвости изменение уровня сигнала происходит вследствие интерференции, то есть в точке приёма электромагнитное поле представляет собой сумму смещённых во времени радиоволн диапазона.

Радиолокация

Радиолока́ция - область науки и техники, объединяющая методы и средства обнаружения, измерения координат, а также определение свойств и характеристик различных объектов, основанных на использовании радиоволн. Близким и отчасти перекрывающимся термином является радионавигация, однако в радионавигации более активную роль играет объект, координаты которого измеряются, чаще всего это определение собственных координат. Основное техническое приспособление радиолокации - радиолокационная станция (англ. Radar).

Различают активную, полуактивную, активную с пассивным ответом и пассивную РЛ. Подразделяются по используемому диапазону радиоволн, по виду зондирующего сигнала, числу применяемых каналов, числу и виду измеряемых координат, месту установки РЛС.

Принцип действия

Радиолокация основана на следующих физических явлениях:

  • Радиоволны рассеиваются на встретившихся на пути их распространения электрических неоднородностях (объектами с другими электрическими свойствами, отличными от свойств среды распространения). При этом отражённая волна, также, как и собственно, излучение цели, позволяет обнаружить цель.
  • На больших расстояниях от источника излучения можно считать, что радиоволны распространяются прямолинейно и с постоянной скоростью, благодаря чему имеется возможность измерять дальность и угловые координаты цели (Отклонения от этих правил, справедливых только в первом приближении, изучает специальная отрасль радиотехники - Распространение радиоволн. В радиолокации эти отклонения приводят к ошибкам измерения).
  • Частота принятого сигнала отличается от частоты излучаемых колебаний при взаимном перемещении точек приёма и излучения (эффект Доплера), что позволяет измерять радиальные скорости движения цели относительно РЛС.
  • Пассивная радиолокация использует излучение электромагнитных волн наблюдаемыми объектами, это может быть тепловое излучение, свойственное всем объектам, активное излучение, создаваемое техническими средствами объекта, или побочное излучение, создаваемое любыми объектами с работающими электрическими устройствами.

Сотовая связь

Сотовая связь , сеть подвижной связи - один из видов мобильной радиосвязи, в основе которого лежит сотовая сеть . Ключевая особенность заключается в том, что общая зона покрытия делится на ячейки (соты), определяющиеся зонами покрытия отдельных базовых станций (БС). Соты частично перекрываются и вместе образуют сеть. На идеальной (ровной и без застройки) поверхности зона покрытия одной БС представляет собой круг, поэтому составленная из них сеть имеет вид сот с шестиугольными ячейками (сотами).

Сеть составляют разнесённые в пространстве приёмопередатчики, работающие в одном и том же частотном диапазоне, и коммутирующее оборудование, позволяющее определять текущее местоположение подвижных абонентов и обеспечивать непрерывность связи при перемещении абонента из зоны действия одного приёмопередатчика в зону действия другого.

Принцип действия сотовой связи

Основные составляющие сотовой сети - это сотовые телефоны и базовые станции, которые обычно располагают на крышах зданий и вышках. Будучи включённым, сотовый телефон прослушивает эфир, находя сигнал базовой станции. После этого телефон посылает станции свой уникальный идентификационный код. Телефон и станция поддерживают постоянный радиоконтакт, периодически обмениваясь пакетами. Связь телефона со станцией может идти по аналоговому протоколу (AMPS, NAMPS, NMT-450) или по цифровому (DAMPS, CDMA, GSM, UMTS). Если телефон выходит из поля действия базовой станции (или качество радиосигнала сервисной соты ухудшается), он налаживает связь с другой (англ. handover ).

Сотовые сети могут состоять из базовых станций разного стандарта, что позволяет оптимизировать работу сети и улучшить её покрытие.

Сотовые сети разных операторов соединены друг с другом, а также со стационарной телефонной сетью. Это позволяет абонентам одного оператора делать звонки абонентам другого оператора, с мобильных телефонов на стационарные и со стационарных на мобильные.

Операторы могут заключать между собой договоры роуминга. Благодаря таким договорам абонент, находясь вне зоны покрытия своей сети, может совершать и принимать звонки через сеть другого оператора. Как правило, это осуществляется по повышенным тарифам. Возможность роуминга появилась лишь в стандартах 2G и является одним из главных отличий от сетей 1G.

Операторы могут совместно использовать инфраструктуру сети, сокращая затраты на развертывание сети и текущие издержки.

Услуги сотовой связи

Операторы сотовой связи предоставляют следующие услуги:

  • Голосовой звонок;
  • Автоответчик в сотовой связи (услуга);
  • Роуминг;
  • АОН (Автоматический определитель номера) и АнтиАОН;
  • Приём и передача коротких текстовых сообщений (SMS);
  • Приём и передача мультимедийных сообщений - изображений, мелодий, видео (MMS-сервис);
  • Мобильный банк (услуга);
  • Доступ в Интернет;
  • Видеозвонок и видеоконференция

Телевидение

Телеви́дение (греч. τήλε - далеко и лат. video - вижу; от новолатинского televisio - дальновидение) - комплекс устройств для передачи движущегося изображения и звука на расстояние. В обиходе используется также для обозначения организаций, занимающихся производством и распространением телевизионных программ.

Основные принципы

Телевидение основано на принципе последовательной передачи элементов изображения с помощью радиосигнала или по проводам. Разложение изображения на элементы происходит при помощи диска Нипкова, электронно-лучевой трубки или полупроводниковой матрицы. Количество элементов изображения выбирается в соответствии с полосой пропускания радиоканала и физиологическими критериями. Для сужения полосы передаваемых частот и уменьшения заметности мерцания экрана телевизора применяют чересстрочную развёртку. Также она позволяет увеличить плавность передачи движения.

Телевизионный тракт в общем виде включает в себя следующие устройства:

  1. Телевизионная передающая камера. Служит для преобразования изображения, получаемого при помощи объектива на мишени передающей трубки или полупроводниковой матрице, в телевизионный видеосигнал.
  2. Видеомагнитофон. Записывает и в нужный момент воспроизводит видеосигнал.
  3. Видеомикшер. Позволяет переключаться между несколькими источниками изображения: видеокамерами, видеомагнитофонами и другими.
  4. Передатчик. Сигнал радиочастоты модулируется телевизионным видеосигналом и передается по радио или по проводам.
  5. Приёмник - телевизор. С помощью синхроимпульсов, содержащихся в видеосигнале, телевизионное изображение воспроизводится на экране приемника (кинескоп, ЖК-дисплей, плазменная панель).

Кроме того, для создания телевизионной передачи используется звуковой тракт, аналогичный тракту радиопередачи. Звук передаётся на отдельной частоте обычно при помощи частотной модуляции, по технологии, аналогичной FM-радиостанциям. В цифровом телевидении звуковое сопровождение, часто многоканальное, передаётся в общем с изображением потоке данных.

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-11

Принцип работы сотовой связи

Основные принципы сотовой телефонии довольно просты. Первоначально Федеральная комиссия по связи установила географические зоны покрытия сотовых радиосистем на основе измененных данных переписи 1980 г. Идея сотовой связи состоит в том, что каждая зона подразделяется на ячейки шестиугольной формы, которые, совмещаясь, образуют структуру, напоминающую пчелиные соты, как показано на рисунке 6.1, а. Шестиугольная форма была выбрана потому, что она обеспечивает наиболее эффективную передачу, приблизительно соответствуя круговой диаграмме направленности и при этом устраняя щели, которые всегда возникают между соседними окружностями.

Сота определяется своими физическими размерами, численностью населения и структурой трафика. Федеральная комиссия по связи не регламентирует количеств сот в системе и их размер, предоставляя операторам возможность установить эти параметры в соответствии с ожидаемой структурой трафика. Каждой географической области выделяется фиксированное количество сотовых речевых каналов. Физические размеры соты зависят от абонентской плотности и структуры вызовов. Например, крупные соты (макросоты) обычно имеют радиус от 1,6 до 24 км при мощности передатчика базовой станции от 1 Вт до 6 Вт. Самые маленькие соты (микросоты) обычно имеют радиус 460 м или меньше при мощности передатчика базовой станции от 0,1 Вт до 1 Вт. На рисунке 6.1, б показана сотовая конфигурация с сотами двух размеров.

Рисунок 6.1. – Сотовая структура ячеек а);сотовая структура с сотами двух размеров б) классификация сот в)

Микросоты чаще всего используются в регионах с высокой плотностью населения. В силу своего небольшого радиуса действия микросоты менее подвержены воздействиям, ухудшающим качество передачи, например, отражениям и задержкам сигнала.

Макросота может накладываться на группу микросот, при этом микросоты обслуживают медленно перемещающиеся мобильные аппараты, а макросота – быстро перемещающиеся аппараты. Мобильный аппарат способен определять скорость своего перемещения как быструю или медленную. Это позволяет уменьшить число переходов из одной соты в другую и коррекции данных о месте нахождения.

Алгоритм перехода из одной соты в другую может быть изменен при малых расстояниях между мобильным аппаратом и базовой станцией микросоты.

Иногда радиосигналы в соте слиш­ком слабы, чтобы обеспечить надеж­ную связь внутри помещений. Осо­бенно это касается хорошо экрани­рованных участков и зон с высоким уровнем помех. В таких случаях ис­пользуются очень маленькие соты – пикосоты. Пикосоты внутри помеще­ний могут использовать те же час­тоты, что и обычные соты данного региона, особенно при благоприятной окружающей среде, как, например, в подземных тоннелях.

При планировании систем, использующих соты шестиугольной формы, передатчики базовой станции могут раз­мещаться в центре соты, на ребре соты или в вер­шине соты (рисунок 6.2 а, б, в соответственно). В сотах с передатчиком в центре используются обычно всенаправленные антенны, а в сотах с передатчиками на ребре или в вершине – секторные направленные антенны.

Всенаправленные антенны излучают и принимают сигналы одинаково во всех направлениях.

Рисунок 6.2 – Размещение передатчиков в сотах: в центре а); на ребре б); в вершине в)

В системе сотовой связи одна мощная стационарная базовая станция, расположенная высоко над центром города, может заменяться многочисленными одинаковыми маломощными станциями, которые устанавливаются в зоне покрытия на площадках, расположенных ближе к земле..

Соты, использующие одну и ту же группу радиоканалов, могут избежать взаимных влияний, если они правильно разнесены. При этом наблюдается повторное использование частот. Повторное использование частот – это выделение одной и той же группы частот (каналов) нескольким сотам при условии, что эти соты разделены значительны­ми расстояниями. Повторному использованию частот способствует уменьшение зоны обслуживания каждой соты. Базовой станции каждой соты выделяется группа рабочих частот, отличающихся от частот соседних сот, а антенны базовой станции выбираются таким образом, чтобы охватить желаемую зону обслуживания в пределах своей соты. Поскольку зона обслуживания ограничена границами одной соты, различные соты могут использовать одну и ту же группу рабочих частот без взаимных влияний при условии, что две таких соты находятся на достаточном расстоянии друг от друга.

Географическая зона обслуживания сотовой системы, содержащая несколько групп сот делится на кластеры (рисунок 6.3). Каждый кластер состоит из семи сот, которым выделяется одинаковое количество полнодуплексных каналов связи. Соты с одинаковыми буквенными обозначениями используют одну и ту же группу рабочих частот. Как видно из рисунка, одинаковые группы частот используются во всех трех кластерах, что позволяет в три раза увеличить количество доступных каналов мобильной связи. Буквы A , B , C , D , E , F и G обозначают семь групп частот.


Рисунок 6.3 – Принцип повторного использования частот в сотовой связи

Рассмотрим систему с фиксированным количеством полнодуплексных каналов, доступных в некоторой области. Каждая зона обслуживания разделя­ется на кластеры и получает группу каналов, которые распределяются между N сотами кластера, группируясь в неповторяющиеся комбинации. Все соты имеют одинаковое количество каналов, но при этом они могут обслуживать зоны раз­ового размера.

Таким образом, общее число каналов сотовой связи, доступных в кластере, можно представить выражением:

F = GN (6.1)

где F – число полнодуплексных каналов сотовой связи, доступных в кластере;

G – число каналов в соте;

N – число сот в кластере.

Если кластер «копируется» в пределах заданной зоны об­служивания m раз, то суммарное число полно дуплексных каналов составит:

C = mGN = mF (6.2)

где С – суммарное число каналов в заданной зоне;

m – число кластеров в заданной зоне.

Из выражений (6.1) и (6.2) видно, что суммарное число каналов в сотовой телефонной системе прямо пропорционально количеству «повторений» кластера в заданной зоне обслуживания. Если размер кластера уменьшается, а размер соты остается неизменным, то для покрытия заданной зоны обслуживания потребуется больше кластеров, и суммарное число каналов в системе возрастет.

Число абонентов, которые могут одновременно использовать одну и ту же группу частот (каналов), находясь не в соседних ячейках небольшой зоны об­служивания (например, в пределах города), зависит от общего числа ячеек в данной зоне. Обычно число таких абонентов равно четырем, однако в густона­селенных регионах оно может быть значительно больше. Это число называют коэффициентом повторного использования частот или FRF Frequency reuse factor . Математически его можно выразить отношением:

(6.3)

где N – общее число полно дуплексных каналов в зоне обслуживания;

С – общее число полнодуплексных каналов в соте.

В условиях прогнозируемого увеличения трафика сотовой связи возросший спрос на обслуживание удовлетворяют путем уменьшения размера соты, раз­деляя ее на несколько сот, каждая из которых имеет свою базовую станцию. Эффективное разделение сот позволяет системе обрабатывать больше вызовов при условии, что соты не будут слишком маленькими. Если диаметр соты стано­вится меньше 460 м, то базовые станции соседних ячеек будут влиять друг на друга. Соотношение между повторным использованием частот и размером кластера определяет, как можно изменить масштаб сотовой системы в случае увеличения абонентской плотности. Чем меньше сот в кластере, тем больше вероятность взаимных влияний между каналами.

Поскольку соты имеют шестиугольную форму, каждая из них всегда имеет шесть равноудаленных соседних сот, и углы между линиями, соединяющими центр любой соты с центрами соседних сот, кратны 60°. Поэтому число возмож­ных размеров кластера и схем размещения сот ограничено. Для соединения сот между собой без пробелов (мозаичным способом) геометрические размеры ше­стиугольника должны быть такими, чтобы число сот в кластере удовлетворяло условию:

(6.4)

где N – число сот в кластере; i и j – неотрицательные целые числа.

Отыскание маршрута к ближайшим сотам с совмещенным каналом (так называемым сотам первого яруса) происходит следующим образом:

Перемещение на i сот (через центры соседних сот):

Перемещение на j сот вперед (через центры соседних сот).

Например, число сот в кластере и место­положение сот первого яруса для следующих значений: j = 2. i = 3 будет определяться из выражения 6.4 (рисунок 6.4) N = 3 2 + 3 2 + 2 2 = 19.

На рисунке 6.5 показаны шесть ближайших сот, использующих те же каналы, что и сота А .


Процесс передачи обслуживания из одной соты в другую, т.е. когда мобильный аппарат удаляется от базовой станции 1 к базовой станции 2 (рисунок 6.6) включает четыре основных этапа:

1) инициирование – мобильный аппарат или сеть выявляет необходимость в передаче обслуживания и инициирует необходимые сетевые процедуры;

2) резервирование ресурсов – с помощью соответствующих сетевых проце­урр резервируются ресурсы сети, необходимые дляпередачи обслуживания (речевой канал и канал управления);

3) исполнение – непосредственная передача управления от одной базовой станции к другой;

4) окончание – излишние сетевые ресурсы освобождаются, становясь доступ­ными другим мобильным аппаратам.

Рисунок 6.6 – Передача обслуживания

Мобильный телефон является неотъемлемой частью современного, технологически развитого общества. Несмотря на обыденность и внешнею простоту этого прибора, очень не многие знают как работает мобильный телефон.

Устройство мобильного телефона

Современные технологии и постоянно движущийся вперёд прогресс позволяют создавать телефоны с огромным количеством функций и возможностей. С каждой новой моделью телефоны становятся всё тоньше, красивее и доступнее по финансам. Несмотря на огромную разновидность моделей и производителей, все эти приборы устроены по одному принципу.

По сути, мобильный телефон - это приёмно-передающее устройство, которое в своём корпусе имеет приёмник, передатчик и радиоантенну. Приёмник обеспечивает приём радиосигнала, преобразовывает его в электрические импульсы и посылает на динамик вашего телефона в виде электрических волн. Динамик преобразует эти электрические импульсы в звук, который мы слышим при разговоре с собеседником.

Микрофон воспринимает вашу речь, преобразует её в электрические сигналы и посылает на встроенный передатчик. Задача передатчика преобразовать электрические импульсы в радиоволны и передать на ближайшую станцию посредством антенны. Антенна служит для усиления приема и передачи радиоволн от телефона на ближайшую станцию сотовой связи.

Как работает телефон стационарный

Устройство стационарного телефона не сильно отличается от мобильного. В стационарном телефоне нет необходимости преобразовывать электрические импульсы в радиоволны, поскольку контакт с абонентом происходит по телефонному кабелю через Автоматическую Телефонную Станцию (АТС). Станция не нуждается в поиске аппарата по зоне своего действия и при наборе номера она автоматически вас соединяет с тем телефонным аппаратом, на который зарегистрирован этот номер.

Как работает мобильная связь?

Каждый из нас имеет возможность визуально наблюдать большое количество радиовышек, расположенных в разных частях города. Эти вышки, как правило, устанавливаются на максимально возвышенных местах, на крышах высотных зданий, на конструкциях других коммуникаций или на собственных стационарных вышках. Эти радиовышки называются базовыми станциями (БС). Вы можете заметить что в городах такие станции установлены гораздо чаще чем на междугороднем пространстве. Это связано с тем, что в городских условиях существует много естественных помех в виде бетонных зданий и различных металлических сооружений, которые значительно ухудшают качество сигнала. Одновременно в городах сосредоточено большее количество абонентов, которые создают сильную нагрузку на сотовую сеть и для поддержания хорошего качества связи требуется усиление зоны покрытия.

Ваш телефон имеет собственную идентификацию в виде мобильного номера вашей SIM карты. Во включённом состоянии, мобильный телефон постоянно сканирует пространство в поисках сети и автоматически выбирает ту Базовую станцию, которая обеспечивает лучшее качество сигнала. Одновременно он сообщает станции о своём местоположении и состоянии, таким образом, центральный компьютер оператора сотовой связи всегда знает, в зоне действия какой базовой станции находится телефон и готов ли он принять сигнал вызова. Как только другой абонент делает вызов вашего номера, компьютер определяет ваше местонахождение и посылает сигнал вызова на ваш телефон. Если телефон выключен или не находится в зоне действия ближайшей Базовой Станции, то компьютер сообщает вам что абонент находится вне зоны покрытия и не может принять звонок.

Телефонная связь – это передача речевой информации на дальние расстояния. С помощью телефонии люди имеют возможность общаться в режиме реального времени.

Если в момент возникновения технологии способ передачи данных существовал только один – аналоговый, то в настоящий момент успешно применяются самые разные системы коммуникации. Телефонная, спутниковая и мобильная связь, а также IP-телефония обеспечивают надёжный контакт между абонентами, будь они даже в разных концах земного шара. Как работает телефонная связь при использовании каждого из методов?

Старая добрая проводная (аналоговая) телефония

Под термином «телефонная» связь чаще всего понимают связь аналоговую, способ передачи данных, ставший привычными за без малого полтора столетия. При использовании такой , информация передаётся непрерывно, без промежуточной кодировки.

Соединение двух абонентов регулируется набором номера, а затем общение ведётся посредством передачи сигнала от человека к человеку по проводам в самом буквальном смысле этого слова. Соединяют абонентов уже не телефонистки, а роботы, что значительно упростило и удешевило процесс, однако принцип работы аналоговых сетей связи остался прежним.

Мобильная (сотовая) связь

Абоненты операторов сотовой связи ошибочно считают, что «перерезали провод», соединяющий их с телефонными станциями. С виду всё так и есть – человек может передвигаться куда угодно (в рамках покрытия сигналом), не прерывая разговор и не теряя контакт с собеседником, да и <подключить телефонную связь стало легче и проще.

Однако если разобраться, как работает мобильная связь, мы обнаружим не так уж много отличий от работы аналоговых сетей. Сигнал на самом деле «витает в воздухе», вот только от телефона звонящего он попадает на приёмопередатчик, который, в свою очередь, связывается с ближайшим к вызываемому абоненту аналогичным оборудованием…посредством оптиковолоконных сетей.

Этап радиопередачи данных охватывает лишь путь сигнала от телефона к ближайшей базовой станции, которая связана с другими коммуникационными сетями вполне традиционным способом. Как работает сотовая связь, ясно. Каковы же её плюсы и минусы?

Технология обеспечивает большую мобильность по сравнению с аналоговой передачей данных, однако несёт в себе всё те же риски нежелательных помех и возможности прослушивания линий.

Путь сотового сигнала

Рассмотрим подробнее, каким именно способом сигнал достигает вызываемого абонента.

  1. Пользователь набирает номер.
  2. Его телефон устанавливает радиосвязь с ближайшей базовой станцией. Они расположены на высотных домах, промышленных сооружениях и вышках. Каждая станция состоит из приемо-передающих антенн (от 1 до 12) и блока управления. Базовые станции, которые обслуживают одну территорию, соединены с контроллером.
  3. От блока управления базовой станции сигнал по кабелю передается на контроллер, а оттуда, тоже по кабелю, - на коммутатор. Это устройство обеспечивает вход и выход сигнала на различные линии связи: междугородней, городской, международной, других мобильных операторов. В зависимости от размеров сети в ней могут быть задействованы как один, так и несколько коммутаторов, соединенных между собой при помощи проводов.
  4. От «своего» коммутатора сигнал по высокоскоростным кабелям передается на коммутатор другого оператора, причем последний легко определяет, в зоне действия какого контроллера находится абонент, которому адресован звонок.
  5. Коммутатор вызывает нужный контроллер, тот пересылает сигнал на базовую станцию, которая «опрашивает» мобильный телефон.
  6. Вызываемому абоненту поступает входящий звонок.

Такая многослойная структура сети позволяет равномерно распределить нагрузку между всеми ее узлами. Тем самым уменьшается вероятность отказа оборудования и обеспечивается бесперебойная связь.

Как работает сотовая связь, ясно. Каковы же её плюсы и минусы? Технология обеспечивает большую мобильность по сравнению с аналоговой передачей данных, однако несёт в себе всё те же риски нежелательных помех и возможности прослушивания линий.

Спутниковая связь

Давайте посмотрим, как работает спутниковая связь, высшая на сегодняшний день ступень развития радиорелейной связи. Ретранслятор, помещённый на орбиту, способен охватывать огромную площадь поверхности планеты в одиночку. Сеть базовых станций, как в случае с сотовой связью, уже не нужна.

Абонент–физическое лицо получает возможность путешествовать практически без ограничений, оставаясь на связи даже в тайге или в джунглях. Абонент–лицо юридическое может привязать к одной антенне-ретранслятору (это ставшая уже привычной «тарелка») целую мини-АТС, однако при этом следует учитывать объём входящих и исходящих, а также размер файлов, которые необходимо переслать.

Минусы технологии:

  • серьёзная метеозависимость. Магнитная буря или другой катаклизм способны надолго оставить абонента без связи.
  • если что-то физически сломалось на спутниковом ретрансляторе, срок, который пройдёт до полного восстановления функциональности, растянется очень надолго.
  • стоимость услуг связи без границ чаще всего превышает более привычные счета. Выбирая способ связи, важно учесть, насколько необходима вам именно столь функциональная связь.

Спутниковая связь: за и против

Главная особенность «спутника» состоит в том, что он обеспечивает абонентам независимость от наземных линий связи. Преимущества такого подхода очевидны. К ним относятся:

  • мобильность оборудования. Его можно развернуть в очень короткие сроки;
  • возможность быстро создавать обширные сети, охватывающие большие территории;
  • связь с труднодоступными и отдаленными территориями;
  • резервирование каналов, которые можно задействовать в случае поломки наземной связи;
  • гибкость технических характеристик сети, позволяющих адаптировать ее практически под любые требования.

Минусы технологии:

  • серьёзная метеозависимость. Магнитная буря или другой катаклизм способны надолго оставить абонента без связи;
  • если что-то физически вышло со строя на спутниковом ретрансляторе, срок, который пройдёт до полного восстановления функциональности системы, растянется надолго;
  • стоимость услуг связи без границ чаще всего превышает более привычные счета.

Выбирая способ связи, важно учесть, насколько необходима вам именно столь функциональная связь.

В теоретической части я не буду углубляться в историю создания сотовой связи, о её основателях, хронологию стандартов и т.д. Кому это интересно – материала предостаточно как в печатных изданиях, так и в сети интернет.

Рассмотрим, что же из себя представляет мобильный (сотовый) телефон.

На рисунке очень упрощённо показан принцип работы:

Рис.1 Принцип работы сотового телефона

Сотовый телефон – это приёмо-передатчик, работающий на одной из частот в диапазоне 850МГц, 900МГц, 1800МГц, 1900МГц. Причём приём и передача разнесены по частотам.

Система GSM состоит из 3-х основных компонентов, таких как:

Подсистема базовых станций (BSS – Base Station Subsystem);

Подсистема переключения/коммутации (NSS –NetworkSwitchingSubsystem);

Центр управления и обслуживания (OMC – Operation and Maintenance Centre);

В двух словах работает это так:

Сотовый (мобильный) телефон взаимодействует с сетью базовых станций (БС). Вышки БС обычно устанавливают либо на своих наземных мачтах, либо на крышах домов или других сооружений, или же на арендованных уже существующих вышках всяческих ретрансляторов радио/ТВ и т.п., а также на высотных трубах котелен и других промышленных сооружений.

Телефон после включения и всё остальное время мониторит (прослушивает, сканирует) эфир на наличие GSM-сигнала своей базовой станции. Сигнал своей сети телефон определяет по специальному идентификатору. Если таковой имеется (телефон находится в зоне покрытия сети), то телефон выбирает лучшую по уровню сигнала частоту и на этой частоте посылает БС запрос на регистрацию в сети.

Процесс регистрации по сути является процессом аутентификации (авторизации). Его суть заключается в том, что каждая SIM-карта, вставленная в телефон, имеет свои уникальные идентификаторы IMSI (International Mobile Subscriber Identity) и Ki (Key for Identification). Эти самые IMSI и Ki заносятся в базу центра аутентификации (AuC) при поступлении изготовленных SIM-карт оператору связи. При регистрации телефона в сети идентификаторы передаются БС, а именно AuC. Дальше AuC (центр идентификации) передаёт телефону некоторое случайное число, которое является ключом для выполнения вычислений по специальному алгоритму. Это вычисление происходит одновременно в мобильном телефоне и AuC, после чего оба результата сравниваются. Если они совпадают, то SIM-карта признаётся подлинной и телефон регистрируется в сети.

Для телефона же идентификатором в сети является его уникальный номер IMEI (International Mobile Equipment Identity). Этот номер обычно состоит из 15 цифр в десятичном представлении. Например 35366300/758647/0. Первые восемь цифр описывают модель телефона и его происхождение. Оставшиеся – серийный номер телефона и контрольное число.

Данный номер хранится в энергонезависимой памяти телефона. В устаревших моделях этот номер можно сменить с помощью специального программного обеспечения (ПО) и соответствующего программатора (иногда и дата-кабеля), а в современных телефонах он дублируется. Один экземпляр номера хранится в области памяти, которую можно программировать, а дубликат – в зоне памяти OTP (One Time Programming), которая программируется производителем один раз и не имеет возможности перепрограммирования.

Так вот, если даже изменить номер в первой области памяти, то телефон, при включении, сравнивает данные обеих областей памяти, и, если обнаруживаются разные номера IMEI – телефон блокируется. Для чего всё это менять, спросите вы? На самом деле законодательство большинства стран запрещает это делать. Телефон по номеру IMEI отслеживается в сети. Соответственно при краже телефона его можно отследить и изъять. А если успеть изменить этот номер на любой другой (рабочий), то шансы найти телефон сводятся к нулю. Этими вопросами занимаются спецслужбы при соответствующей помощи оператора сети и т.д. Поэтому углубляться в эту тему не стану. Нас интересует чисто технический момент смены номера IMEI.

Дело в том, что при определённых обстоятельствах данный номер может повредиться в результате сбоя ПО или неправильного его обновления и тогда телефон абсолютно не пригоден для эксплуатации. Вот тут на помощь и приходят все средства, чтобы восстановить IMEI и работоспособность аппарата. Подробнее этот момент будет рассмотрен в разделе программного ремонта телефона.

Теперь кратенько о передаче голоса от абонента к абоненту в стандарте GSM. На самом деле это технически очень сложный процесс, который абсолютно отличается от привычной передачи голоса по аналоговым сетям как, например, домашний проводной/радио телефон. Чем-то отдалённо похожи цифровые DECT-радиотелефоны, но реализация всё равно другая.

Дело в том, что голос абонента, прежде чем будет передан в эфир, подвергается множеству преобразований. Аналоговый сигнал разбивается на отрезки длительностью 20мс, после чего преобразовывается в цифровой, после чего кодируется путём применения алгоритмов шифрования с т.н. открытым ключом – система EFR (Enhanced Full Rate - усовершенствованная система кодирования речи, разработанная финской компанией Nokia).

Все сигналы кодека обрабатываются очень полезным алгоритмом на основе принципа DTX (Discontinuous Transmission) –прерывистой передачи речи. Его полезность заключается в том, что он управляет передатчиком телефона, включая его только в том момент, когда начинается произношение речи и отключает в паузах между разговором. Всё это достигается с помощью включенного в кодек VAD (Voice Activated Detector) –детектор активности речи.

У принимаемого абонента все преобразования происходят в обратном порядке.

Устройство мобильного телефона и его основные функциональные узлы (модули).

Любой мобильный телефон – это сложное техническое устройство, состоящее из множества функционально законченных модулей, которые взаимосвязаны между собой и в целом обеспечивают нормальную работу аппарата. Выход из строя хотя бы одного модуля влечёт за собой минимум – частичную неисправность аппарата, максимум – телефон полностью неработоспособен.

Схематически мобильный телефон выглядит так:

Рис.2 Устройство сотового телефона

Назначение и работа отдельных узлов.

1. Аккумуляторная батарея (АКБ) – основной (первичный) источник питания телефона. В процессе эксплуатации имеет одно неприятное свойство – старение, т.е. потеря ёмкости, увеличение внутреннего сопротивления. Это необратимый процесс и скорость старения аккумулятора зависит от многих факторов, ключевыми из которых является правильная эксплуатация и хранение.

Раньше основная масса АКБ для телефонов производилась по технологиям NiCd (на основе никеля и кадмия), NiMH (никель-металлгидрид). В настоящее время данные аккумуляторы сняты с производства. С распространением АКБ на основе технологии Li-Ion (литий-ион), последние показали лучшее соотношение цена-качество, а также имели ряд преимуществ, в частности отсутствие т.н. «эффекта памяти». Продолжительность срока службы составляет примерно 3-4 года. Не так давно на рынке появились Li-Pol (литий-полимерные) аккумуляторы. Они стоят дешевле литий-ионных, но срок службы у них тоже меньше – примерно 2 года.

Современные АКБ признаются работоспособными, если у них сохранилось не менее 80% от номинальной ёмкости. На практике же встречаются АКБ с 50% и меньше. То есть многие пользователи пытаются «выжать» из аккумулятора последние миллиамперы, из-за чего сами потом и страдают, так как нередко изношенный аккумулятор начинает вздуваться, что может приводить к поломкам корпуса телефона, а иногда даже к выходу из строя сетевого зарядного устройства, цепей зарядки телефона, контролера питания. Так что, на АКБ денег экономить не стоит. Телефону тоже нужно хорошее питание

Особого ухода АКБ не требуют. Главное, не допускать переохлаждения в зимнее время (до -10°С), т.к. ускоряется разряд и старение. А так же нагрев до 50-60°С и выше. Это опасно – АКБ может попросту вздуться и даже взорваться (именно для литиевых АКБ это критично)!!!

АКБ мобильного телефона состоит из 2-х частей: собственно батареи и маленькой платы электроники-автоматики.

Рис.3 Устройство аккумуляторной батареи

На рисунке для наглядности я показал уже испорченную вздувшуюся батарею. Чаще всего это происходит в результате использования дешёвых зарядных устройств, при неисправностях схемы зарядки телефона, а также при выбранных производителем больших зарядных токов (для сокращения времени заряда АКБ). Ну и, конечно же, дешёвые неоригинальные батареи «толстеют» очень быстро.

Что касается платы электроники, то она выполняет защитную функцию, предотвращая как саму батарею, так и телефон от внештатных ситуаций, таких как:

Короткое замыкание (КЗ) питающих клемм аккумулятора;

Перегрев батареи в процессе зарядки и эксплуатации;

Разряд батареи ниже установленной минимально допустимой нормы;

Перезаряд батареи;

При возникновении одной из них, срабатывает т.н. электронное реле и выходные клеммы АКБ обесточиваются.

Как правило, современная АКБ имеет минимум 3 контактных вывода для подключения к батарейному разъему мобильного телефона. Это соответственно «+», «-», и «TEMP» (датчик температуры, с помощью которого контроллер батареи совместно с контроллером питания телефона управляют процессом зарядки батареи, уменьшая или увеличивая зарядный ток, а при перегревах или КЗ вообще отключают батарею от клемм платы электроники).

Рис.4 Расположение контактов АКБ

Следует заметить, что у разных производителей расположение контактов может отличаться!!!

Основными характеристиками АКБ являются:

Номинальное напряжение – как правило 3,6 – 3,7Вольт. Для полностью заряженного аккумулятора 4,2 – 4,3 Вольт.

- ёмкость – для современных телефонов примерно от 700мА до 2000мА и более.

Внутреннее сопротивление - чем меньше - тем лучше (примерно до 200 миллиОм)

2. Контроллер питания – служит для преобразования напряжения АКБ в несколько видов напряжений для питания отдельных узлов и устройств телефона, таких, как CPU (центральный процессор), RAM и ROM (микросхемы памяти), всевозможных усилителей, иногда подсветок клавиатуры и дисплея и т.д., а так же управляет процессом зарядки АКБ. Совместно с процессором активирует встроенные в него или же внешние усилители звука разговорного динамика, микрофона, буззера (полифонического громкоговорителя). Плюс ко всему обеспечивает обмен данными с SIM-картой.

Конструктивно выполнен в виде отдельного чипа. Иногда может быть совмещён с процессором (китайские подделки известных брендов типа Nokia N95 и т.д.)

При нормальной эксплуатации телефона контроллер питания редко выходит из строя. Чаще всего это случается во время зарядки при перегреве или при использовании неоригинального или неисправного зарядного устройства(ЗУ). Реже - если телефон подвергся воздействию влаги, был сильно ударен.

Внешний вид представлен на рис.2 и может отличаться (зависит от конкретной модели телефона и его производителя).

3. SIM-holder (sim – коннектор) – держатель SIM – карты. Исходя из названия – служит для подключения SIM – карты к телефону. Конструкция практически одинакова для всех телефонов, так как современные SIM – карты приведены к одному стандарту. Имеет в себе 6 (редко 8) подпружиненных контактов, с помощью которых осуществляется электрическая связь SIM – карты и контроллера питания либо процессора. Отличаются лишь конструкцией крепления (удерживания) SIM – карты. К поломкам можно отнести обламливание контактов при частой смене SIM – карт или же неумелом (неправильном) их извлечении, когда пользователь начинает применять подручные средства для подковыривания SIM – карты для дальнейшего захвата пальцами и извлечения из держателя. Часто к этому прибегают наши прекрасные дамы, используя свои длинные, с дорогим маникюром ногти. В итоге – страдает и телефон и маникюр

Специального ухода коннектор не требует. Но бывают случаи (опять таки зависит от пользователя), когда контакты окисляются, засоряются, теряют свои пружинящие свойства. В таком случае допускается ОЧЕНЬ ОСТОРОЖНО!!! протереть их стирательной резинкой (ластиком) и ОЧЕНЬ ОСТОРОЖНО!!!, слегка, иголкой или деревянной зубочисткой подогнуть контакты вверх.

При описанных выше неисправностях SIM – холдера (держателя), телефон не будет «видеть» вашу SIM – карту и постоянно будет выводить на дисплей сообщение типа: «Вставьте SIM – карту». Сломанные держатели ремонту не подлежат и требуют замены на новые.

4. Микрофон – служит для преобразования голоса пользователя в слабые электрические сигналы с целью их дальнейшего усиления, преобразования и отправки в эфир. В сотовых телефонах бывают двух типов: аналоговые и цифровые. Последние имеют более сложную конструкцию и требуют больше трудозатрат при демонтаже и замене.

Микрофоны теряют свои эксплуатационные характеристики или выходят из строя в основном при загрязнении, попадании воды, при ударах телефона (особенно это касается цифровых микрофонов, т.к. они сами по себе очень хрупкие).

При неисправностях микрофона в телефоне могут быть такие дефекты:

Второй абонент не слышит пользователя вообще;

Второй абонент слышит пользователя очень слабо;

В слуховом (разговорном) динамике слышен треск (т.н. наводка GSM – сигнала). Такой же шум можно услышать, поднеся сотовый телефон в режиме разговора или отправки sms к работающему радиоприёмнику, усилителю, компьютерным колонкам и т.д. Как привило, микрофоны не ремонтируются и подлежат замене (кроме случаев засорения отверстий, звуководов корпуса мобильного телефона. Их следует просто очистить от пыли, грязи и т.д.)

5. Динамик (разговорный динамик) – служит для преобразования электрических сигналов в звуковые колебания. То есть работает в обратном порядке микрофона. Один абонент говорит в микрофон, который преобразовывает голос в эл. сигналы, далее эти сигналы преобразовываются (см. описание выше), излучаются в эфир. Второй абонент принимает эти сигналы телефоном и слышит их в динамике телефона.

В большинстве телефонов установлено несколько динамиков – отдельно разговорный и отдельно полифонический. Полифонический динамик воспроизводит мелодию при входящем вызове, смс и т.д. Но есть телефоны (в большинстве фирмы Samsung), где роль разговорного и полифонического выполняет один и тот же динамик. Только при воспроизведении мелодии или других сигналов активируется дополнительный усилитель мощности звука. К неисправностям динамиков можно отнести частичную неисправность и полную. Частичная – это воспроизведение речи или музыки очень тихо, с хрипами и неприятным звоном. Это можно устранить, но лишь в тех случаях, когда, после внешнего осмотра будет видно, что динамик засорён посторонними предметами. Например такими, как очень мелкая металлическая стружка, которая любит проникать через специально отведённые отверстия для выхода звука динамика. Это обусловлено тем, что динамик в своей конструкции содержит постоянный магнит. Вот он и примагничивает к себе мелкие металлические предметы. Лично я сторонник замены таких динамиков на новые. Во-первых, это сэкономит вам время, которое вы будете тратить на чистку, а его вам понадобиться немало. Во-вторых, редко бывает, что после чистки динамик работает так же чисто, без искажений и так же громко. Так что, не думайте – сразу меняйте на новый. Особенно, если это телефон не ваш, а пришёл в ремонт.

Полная – отсутствие звука вообще. Причина – обрыв провода звуковой катушки динамика. Решается только заменой динамика. О том, как проверить динамик на исправность (целостность) я напишу ниже.

6. Спикер(буззер, звонок, полифонический динамик – это всё одно и то же) – тот же динамик, только в большинстве случаев предназначен для воспроизведения мелодии звонка, смс, MP3 и т.д. Но, как говорилось выше, может использоваться и для разговора. Неисправности и способы устранение такие же, как и для разговорного динамика.

7. Центральный процессор (CPU) – является основным устройством мобильного телефона. Это тот же процессор, который присутствует в любом персональном компьютере, ноутбуке и т.д., только немножко поменьше и попримитивнее. Предназначен для выполнения машинных команд, инструкций и операций, предусмотренных программным обеспечением (прошивкой –разг.) телефона, а также чёткого взаимодействия с остальными модулями и устройствами и последующего управления ими. Одним словом, процессор – это «мозг», который полностью управляет работой мобильного телефона. Конструктивно выполнен в виде отдельного чипа. Отвечает за множество процессов, происходящих во время нормальной работы телефона. Основные из них это: вывод изображения на дисплей, приём и обработка сигналов сотовой сети, приём и обработка сигналов клавиатурного модуля, управление работой камеры, устройств приёма/передачи информации, процессом зарядки аккумулятора (совместно с контроллером питания) и много другого.

При условии нормальной эксплуатации телефона процессор практически никогда не выходит из строя и никакого ухода не требует.

В современных телефонах, а особенно смартфонах (в переводе с англ. смартфон – умный телефон. Тот же телефон, только имеет сходство с компьютером в виду наличия операционной системы и множеством устанавливаемых программ для выполнения тех или иных задач) часто устанавливается 2 процессора. Один из них выполняет те же функции, что и в обычном телефоне, а второй предназначен для работы операционной системы и выполнения её программ.

При выходе из строя центрального процессора телефон полностью неработоспособен.

8. Flash – память. Отдельный чип (микросхема), который предназначен для хранения программного обеспечения телефона (прошивки, firmware), а так же данных пользователя (контакты, мелодии, фотографии и т.д.). Программное обеспечение (прошивка, firmware) – это разработанная производителем телефона программа, которая обрабатывается и исполняется процессором. Для пользователя – это то, что он видит на экране мобильного телефона и те функции, которые ему доступны в конкретной модели телефона.

Флэш-память так же редко выходит из строя при условии нормальной эксплуатации. Но следует помнить, что эти чипы имеют хоть и большое, но всё же ограниченное количество циклов чтения/записи информации.

Флэш-память является энергонезависимой и сохраняет все записанные в неё данные даже после отключения источника питания (например, АКБ).

9. RAM – память (ОЗУ). Служит для временного хранения данных. В ней производятся все процессорные вычисления программного кода, а также хранятся результаты вычислений и обработки информации в конкретный текущий момент (например, прослушивание музыки, воспроизведение видео, работа приложений, игр и т.д.) За ненадобностью память очищается от одних данных и загружает новые и так постоянно.

Следует помнить, что память ОЗУ (оперативное запоминающее устройство) является энергоЗАВИСИМОЙ и в случае отключения источника питания все данные, которые хранились в ОЗУ будут утеряны!!!

10. Клавиатурный модуль – стандартная цифровая клавиатура для набора номера абонента, текста смс сообщений + набор дополнительных кнопок, которые выполняют определённые программным обеспечением телефона функции, например регулировку уровня громкости, запуск программ, фотокамеры, диктофона и т.д. Для нормальной работы клавиатурного модуля основная задача пользователя – содержать клавиатуру в чистоте и не допускать попадания влаги, грязи и других предметов. В противном случае кнопки приходится давить с большим усилием или же телефон вообще не реагирует на нажатия. Восстановить работу клавиатурного модуля можно методом чистки от загрязнений. Если же контактные площадки и соединяющие их проводники были подвергнуты воздействию влаги или др. жидкостей и были повреждены, то такой клав.модуль подлежит замене на новый.

11. LCD –дисплей – собственно дисплей (экран) телефона. Предназначение всем понятно, поэтому углубляться на этом не стану. Основными характеристиками являются такие параметры, как:

Разрешающая способность, то есть количество воспроизводимых пикселей (точек). Чем выше этот параметр, тем чётче и качественнее будет картинка. Для более-менее современных телефонов свойственны такие разрешения экрана: 220Х176 пикселей, 320Х240. Для телефонов с большими сенсорными экранами: 400Х240, 640Х360, 800Х400.

Количество воспроизводимых (отображаемых) цветов. Тоже самое, чем больше, тем лучше. В устаревших телефонах с цветными дисплеями это значение в основном 4096 цветов. По мере совершенствования этот параметр увеличился до 65тыс., потом достиг 262тыс.. Сейчас все современные дорогие телефоны снабжены дисплеями с глубиной цвета 16млн.

При правильной эксплуатации телефона дисплей не требует никакого ухода. В некоторых случаях, когда телефон используется в запылённой среде или же просто со временем в корпус набилось много пыли и мусора, то дисплей необходимо АККУРАТНО протереть микрофиброй (специальная протирочная салфетка, которая хорошо очищает и не оставляет следов и разводов. Её можно приобрести в салонах продажи оптики. Некоторые виды очков комплектуются такой протирочной микрофиброй.) При эксплуатации телефона нельзя допускать физического воздействия на дисплей (удары, сдавливания, сильные перегибы), а также подвергать воздействию прямых солнечных лучей и повышенной температуры. Это приведёт к выходу его из строя.

12. Приёмопередатчик – служит для приёма и передачи сотового GSM-сигнала. Содержит в себе много функциональных элементов (генераторы управляемые напряжением приёмника и передатчика, полосовые фильтры, развязывающие конденсаторы, индуктивности и т.д.). Управляется процессором и кварцевым резонатором 26МГц.

При неисправностях приёмопередатчика телефон не сможет зарегистрироваться в сотовой сети и на дисплее будет отсутствовать индикатор уровня GSM-сигнала.

13. Усилитель мощности – предназначен для усиления сигнала, вырабатываемого приёмопередатчиком, до уровня мощности, необходимого для излучения антенной в эфир.

При неисправностях усилителя мощности телефон будет принимать сигнал сотовой сети, но зарегистрироваться в ней не сможет, так как не сможет передавать GSM-сигнал.

14. Антенный переключатель (свитч) – предназначен для сопряжения (подключения) приёмного и передающего тракта GSM-модуля к антенне телефона. Этим достигается наличие в телефоне одной общей антенны для приёма и передачи, а также исключается влияние усилителя мощности на приёмный тракт.