Функции CAD-систем в ма­шиностроении подразделяют на функции двухмерного (2D) и трехмерного (3D) проектирования. К функциям 2D относятся черчение, оформление конструкторской документации; к функциям 3D - по­лучение трехмерных моделей, метрические расчеты, реалистичная визуализация, взаимное преобра­зование 2D и 3D моделей.

Среди CAD-систем различают “легкие” и “тяжелые” системы. Первые из них ориентированы преимущественно на 2D графику, сравнительно дешевы и менее требовательны в отношении вычис­лительных ресурсов. Вторые ориентированы на геометрическое моделирование (3D), более универ­сальны, дороги, оформление чертежной документации в них обычно осуществляется с помощью предварительной разработки трехмерных геометрических моделей.

Основные функции CAM-систем: разработка технологических процессов, синтез управляющих программ для технологического оборудования с числовым программным управлением (ЧПУ), моде­лирование процессов обработки, в том числе построение траекторий относительного движения инст­румента и заготовки в процессе обработки, генерация постпроцессоров для конкретных типов обору­дования с ЧПУ (NC - Numerical Control), расчет норм времени обработки.

Наиболее известны (к 1999 г.) следующие CAE/CAD/CAM-системы, предназначенные для машиностроения. “Тяже­лые” системы (в скобках указана фирма, разработавшая или распространяющая продукт): Unigraphics (EDS Unigraphics); Solid Edge (Intergraph); Pro/Engineer (PTC - Parametric Technology Corp.), СЛТ1Л (Dassault Systemes), EUCLID (Matra Datavision), CADDS.5 (Computervision, ныне входит в PTC) и др.

“Легкие” системы: AutoCAD (Autodesk); АДЕМ; bCAD (ПроПро Группа, Новосибирск); Caddy (Ziegler Informatics); Компас (Аскон, С.Петербург); Спрут (Sprut Technology, Набережные Челны); Кредо (НИВЦ АСК, Москва).

Системы, занимающие промежуточное положение (среднемасштабные): Cimatron, Microstation (Bentley), Euclid Prelude (Matra Datavision), T-FlexCAD (Топ Системы, Москва) и др. С ростом возможностей персональных ЭВМ грани между “тяжелыми” и “легкими” CAD/CAM-системами постепенно стираются.

Функции CAE-систем довольно разнообразны, так как связаны с проектными процедурами ана­лиза, моделирования, оптимизации проектных решений. В состав машиностроительных САЕ-систем прежде всего включают программы для следующих процедур:

Моделирование полей физических величин, в том числе анализ прочности, который чаще все­го выполняется в соответствии с МКЭ;

Расчет состояний и переходных процессов на макроуровне;

Имитационное моделирование сложных производственных систем на основе моделей массо­вого обслуживания и сетей Петри.

Примеры систем моделирования полей физических величин в соответствии с МКЭ: Nastran, Ansys, Cosmos, Nisa, Moldflow.

Примеры систем моделирования динамических процессов на макроуровне: Adams и Dyna - в механических сис­темах, Spice - в электронных схемах, ПА9 - для многоаспектного моделирования, т.е. для моделирования систем, прин­ципы действия которых основаны на взаимовлиянии физических процессов различной природы.

Для удобства адаптации САПР к нуждам конкретных приложений, для ее развития целесообраз­но иметь в составе САПР инструментальные средства адаптации и развития. Эти средства представ­лены той или иной CASE-тсхнологисй, включая языки расширения. В некоторых САПР применяют оригинальные инструментальные среды.

Примерами могут служить объектно-ориентированная интерактивная среда CAS.CADE в системе EUCLID, содер­жащая библиотеку компонентов, в САПР T-Flex CAD 3D предусмотрена разработка дополнений в средах Visual C++ и Visual Basic.

Важное значение для обеспечения открытости САПР, се интегрируемости с другими автомати­зированными системами (АС) имеют интерфейсы, представляемые реализованными в системе форма­тами межпрограммных обменов. Очевидно, что, в первую очередь, необходимо обеспечить связи между CAE, CAD и САМ-подсистемами.

В качестве языков - форматов межпрограммных обменов - используются IGES, DXF, Express (стандарт ISO 10303-11, входит в совокупность стандартов STEP), SAT (формат ядра AC1S) и др.

Наиболее перспективными считаются диалекты языка Express, что объясняется общим характе­ром стандартов STEP, их направленностью на различные приложения, а также на использование в со­временных распределенных проектных и производственных системах. Действительно, такие форма­ты, как IGES или DXF, описывают только геометрию объектов, в то время как в обменах между раз­личными САПР и их подсистемами фигурируют данные о различных свойствах и атрибутах изделий.

Язык Express используется во многих системах интерфейса между CAD/CAM-системами. В частности, в систему CAD ++ STEP включена среда SDA1 (Standard Data Access Interface), в которой возможно представление данных об объек­тах из разных систем CAD и приложений (но описанных по правилам языка Express). CAD++ STEP обеспечивает доступ к базам данных большинства известных САПР с представлением извлекаемых данных в виде STEP-файлов. Интерфейс программиста позволяет открывать и закрывать файлы проектов в базах данных, производить чтение и запись сущностей. В качестве объектов могут использоваться точки, кривые, поверхности, текст, примеры проектных решений, размеры, свя­зи, типовые изображения, комплексы данных и т.п.

Определение CAD, САМ и CAE

Согласно предыдущему разделу, автоматизированное проектирование (computer- aided design - CAD) представляет собой технологию, состоящую в использовании компьютерных систем для облегчения создания, изменения, анализа и оптимизации проектов. Таким образом, любая программа, работающая с компьютерной графикой, также как и любое приложение, используемое в инженерных расчетах, относится к системам автоматизированного проектирования. Другими словами, множество средств CAD простирается от геометрических программ для работы с формами до специализированных приложений для анализа и оптимизации. Между этими крайностями умещаются программы для анализа допусков, расчета масс-инерционных свойств, моделирования методом конечных элементов и визуализации результатов анализа. Самая основная функция GAD - определение геометрии конструкции (детали механизма, архитектурные элементы, электронные схемы, планы зданий и т, и,), поскольку геометрия определяет все последующие этапы жизненного цикла продукта. Для этой цели обычно используются системы разработки рабочих чертежей и геометрического моделирования. Вот почему эти системы обычно и считаются системами автоматизированного проектирования. Более того, геометрия, определенная в этих системах, может использоваться в качестве основы для дальнейших операций в системах САЕ и САМ. Это одно из наиболее значительных преимуществ CAD, позволяющее экономить время и сокращать количество ошибок, связанных с необходимостью определять геометрию конструкции с нуля каждый раз, когда она требуется в расчетах. Можно, следовательно, утверждать, что системы автоматизированной разработки рабочих чертежей и системы геометрического моделирования являются наиболее важными компонентами автоматизированного проектирования.

Автоматизированное производство (computer-aided manufacturing - САМ) - это технология, состоящая в использовании компьютерных систем для планирования, управления и контроля операций производства через прямой или косвенный интерфейс с производственными ресурсами предприятия. Одним из наиболее зрелых подходов к автоматизации производства является числовое программное управление (ЧПУ, numerical conovl - NC). ЧПУ заключается в использовании запрограммированных команд для управления станком, который может шлифовать, резать, фрезероваггь, штамповать, изгибать и иными способами превращать заготовки в готовые детали. В наше время компьютеры способны генерировать большие программы для станков с ЧПУ на основании геометрических параметров изделий из базы данных CAD и дополнительных сведений, предоставляемых оператором. Исследования в этой области концентрируются на сокращении необходимости вмешательства оператора.

Еще одна важная функция систем автоматизированного производства - программирование роботов, которые могут работать на гибких автоматизированных участках, выбирая и устанавливая инструменты и обрабатываемые детали на станках с ЧПУ Роботы могут также выполнять свои собственные задачи, например, заниматься сваркой, сборкой и переносом оборудования и деталей по цеху.

Планирование процессов также постепенно автоматизируется. План процессов может определять последовательность операций по изготовлению устройства от начала и до конца на всем необходимом оборудовании. Хотя полностью автоматизированное планирование процессов, как уже отмечалось, практически невозможно, план обработки конкретной детали вполне может бьггь сформирован автоматически, если уже имеются планы обработки аналогичных деталей. Для этого была разработана технология группировки, позволяющая объединять схожие детали о семейства. Детали считаются подобными, если опт имеют общие производственные особенности (гнезда, пазы, фаски, отверстия и т, д.). Для аЕггомалгического обнаружения схожести деталей необходимо, чтобы бала данных CAD содержала сведения о таких особенностях. Эта задача осуществляется при помощи объектно-ориентированного моделирования или распознавания элементов.

Вдобавок, компьютер может использоваться для того, чтобы выявлять необходимость заказа исходных материалов и покупных деталей, а также определять их количество исходя из графика производства. Называется такая деятельность планированием технических требований к материалу (material requirements planning - MRP). Компьютер может также использоваться для контроля состояния станков в цехе и отправки им соответствующих заданий.

Автоматизированное конструирование (computer-aided engineering - CAE) - это технология, состоящая в использовании компыотерных систем для анализа геометрии CAD, моделирования и изучения поведения продукта для усовершенствования и оптимизации его конструкции. Средства САЕ могут осуществлять множество различных вариантов анализа. Программы для кинематических расчетов, например, способны определять траектории движения и скорости звеньев и механизмах. Программы динамического анализа с большими смещениями могут использоваться для определения нагрузок и смещений в сложных составных устройствах типа автомобилей. Программы верификации и анализа логики и синхронизации имитируют работу сложных электронных цепей.

По всей видимости, из всех методов компьютерного анализа наиболее широко в конструировании используется метод конечных элементов (finite - element method - FEM). С его помощью рассчитываются напряжения, деформации, теплообмен, распределение магнитного поля, потоки жидкостей и другие задачи с непрерывными средами, решать которые каким-либо иным методом оказывается просто непрактично. В методе конечных элементов аналитическая модель структуры представляет собой соединение элементов, благодаря чему она разбивается на отдельные части, которые уже могут обрабатываться компьютером.

Как отмечалось ранее, для использования метода конечных элементов нужна абстрактная модель подходящего уровня, а не сама конструкция. Абстрактная модель отличается от конструкции тем, что она формируется путем исключения несущественных деталей и редуцирования размерностей. Например, трехмерный объект небольшой толщины может быть представлен в виде двумерной оболочки. Модель создается либо в интерактивном режиме, либо автоматически. Готовая абстрактная модель разбивается на конечные элементы, образующие аналитическую модель. Программные средства, позволяющие конструировать абстрактную модель и разбивать ее па конечные элементы, называются препроцессорами (preprocessors). Проанализировав каждый элемент, компьютер собирает результаты воедино и представляет их в визуальном формате. Например, области с высоким напряжением могут быть, выделены красным цветом. Программные средства, обеспечивающие визуализацию, называются постпроцессорами (postprocessors).

Существует множество программных средств для оптимизации конструкций. Хотя средства оптимизации могут быть отнесены к классу САЕ, обычно их рассматривают отдельно. Ведутся исследования возможности автоматического определения формы конструкции путем объединения оптимизации и анализа. В этих подходах исходная форма конструкции предполагается простой, как, например, у прямоугольного двумерного объекта, состоящего из небольших элементов различной плотности. Затем выполняется процедура оптимизации, позволяющая определить конкретные значения плотности, позволяющие достичь определенной цели с учетом ограничений на напряжения. Целью часто является минимизация веса. После определения оптимальных значений плотности рассчитывается оптимальная форма объекта. Она получается отбрасыванием элементов с низкими значениями плотности.

Замечательное достоинство методов анализа и оптимизации конструкций заключается в том, что они позволяют конструктору увидеть поведение конечного продукта и выявить возможные ошибки до создания и тестирования реальных прототипов, избежав определенных затрат. Поскольку стоимость конструирования на последних стадиях разработки и производства продукта экспоненциально возрастает, ранняя оптимизации и усовершенствование (возможные только благодаря аналитическим средствам САЕ) окупаются значительным снижением сроков и стоимости разработки.

Таким образом, технологии CAD, САМ и САЕ заключаются в автоматизации и повышении эффективности конкретных стадий жизненного цикла продукта. Развиваясь независимо, эти системы еще не до конца реализовали потенциал интеграции проектирования и производства. Для решения этой проблемы была предложена новая технология, получившая название компьютеризованного

интегрированного производства (computer - integrated manufacturing - С/М). CIM пытается соединить «островки автоматизации» вместе и превратить их в бесперебойно и эффективно работающую систему. CIM подразумевает использование компьютерной базы данных для более эффективного управления всем предприятием, в частности бухгалтерией, планированием, доставкой и другими задачами, а не только проектированием и производством, которые охватывались системами CAD, САМ и CAE. С1М часто называют философией бизнеса, а не компьютерной системой.

Наконец, системы управления инженерными данными (PDM - Product Data Management) обеспечивают хранение и управление проектно-конструкторской документации разрабатываемых изделий, ведение изменений в документации, сохранение истории этих изменений и т. п.

Итак, термин САПР (система автоматизации проектирования) подразумевает комплексный подход к разработке изделия и включает совокупность систем CAD/CAM/CAE. Развитие систем геометрического моделирования, анализа и расчета характеристик изделия сопровождается интеграцией в рамках предприятия. Мировой рынок обособленных CAD/CAM решений уже насыщен, системы близки по функциональности, и темпы роста этого сегмента рынка минимальны. По этой причине происходит усиление интеграции систем CAD/CAM/CAE с системами PDM, которые позволяют хранить и управлять проектно-конструкторской документацией на разрабатываемые изделия, вносить в документацию изменения, поддерживать хранение истории этих изменений. Распространение функций PDM-систем на все этапы жизненного цикла продукции превращает их в системы PLM (Product Lifecycle Management). Развитие систем PLM обеспечивает максимальную интеграцию процессов проектирования, производства, модернизации и сопровождения продукции предприятия и по сути имеет много общего с концепцией интегрированной поддержки жизненного цикла изделия (CALb-технологии).

И др.).

Современные системы автоматизации инженерных расчётов (CAE) применяются совместно с CAD -системами (зачастую интегрируются в них, в этом случае получаются гибридные CAD/CAE-системы).

CAE-системы - это разнообразные программные продукты, позволяющие при помощи расчётных методов (метод конечных элементов, метод конечных разностей, метод конечных объёмов) оценить, как поведёт себя компьютерная модель изделия в реальных условиях эксплуатации. Помогают убедиться в работоспособности изделия, без привлечения больших затрат времени и средств.

В русском языке есть термин САПР , который подразумевает CAD /CAM /CAE/PDM .

Наиболее распространённые CAE-системы

История развития

Историю развития рынка CAD/CAM/CAE-систем можно достаточно условно разбить на три основных этапа, каждый из которых длился, примерно, по 10 лет.

В начале 1980-х годов произошло расслоение рынка CAD-систем на специализированные секторы. Электрический и механический сегменты CAD-систем разделились на отрасли ECAD и MCAD. Разошлись по двум различным направлениям и производители рабочих станций для CAD-систем, созданных на базе ПК:

  • часть производителей сориентировалась на архитектуру IBM PC на базе микропроцессоров Intel х86;
  • другие производители предпочли ориентацию на архитектуру Motorola (ПК её производства работали под управлением ОС Unix от AT&T, ОС Macintosh от Apple и Domain OS от Apollo).

Производительность CAD-систем на ПК в то время была ограничена 16-разрядной адресацией микропроцессоров Intel и MS-DOS . Вследствие этого, пользователи, создающие сложные твердотельные модели и конструкции, предпочитали использовать графические рабочие станции под ОС Unix с 32-разрядной адресацией и виртуальной памятью, позволяющей запускать ресурсоёмкие приложения.

К середине 1980-х годов возможности архитектуры Motorola были полностью исчерпаны. На основе передовой концепции архитектуры микропроцессоров с усеченным набором команд (Reduced Instruction Set Computer - RISC) были разработаны новые чипы для рабочих станций под ОС Unix (например, Sun SPARC). Архитектура RISC позволила существенно повысить производительность CAD-систем.

С середины 1990-х годов развитие микротехнологий позволило компании Intel удешевить производство своих транзисторов, повысив их производительность. Вследствие этого появилась возможность для успешного соревнования рабочих станций на базе ПК с RISC/Unix-станциями. Системы RISC/Unix были широко распространены во 2-й половине 1990-х годов, и их позиции все ещё сильны в сегменте проектирования интегральных схем. Зато сейчас Windows NT и Windows 2000 практически полностью доминируют в областях проектирования конструкций и механического инжиниринга, проектирования печатных плат и др. По данным Dataquest и IDC, начиная с 1997 года рабочие станции на платформе Windows NT/Intel (Wintel) начали обгонять Unix-станции по объёмам продаж. За прошедшие с начала появления CAD/CAM/CAE-систем годы стоимость лицензии на них снизилась до нескольких тысяч долларов (например, 6000 долл. у Pro/Engineer).

Примечания

Ссылки

  • Конференция САПР2000 (бывший САПР2К), посвящённая использованию CAD/CAE/CAM-технологий

Wikimedia Foundation . 2010 .

Смотреть что такое "Computer-aided engineering" в других словарях:

    Computer-aided engineering - (dt. rechnergestützte Entwicklung), abgekürzt CAE, umfasst alle Varianten der Computerunterstützung von Arbeitsprozessen in der Technik: CAD (computer aided design, rechnerunterstützte Konstruktion) Digital Mock Up (DMU, Ein und… … Deutsch Wikipedia

    Computer-Aided Engineering - , CAE … Universal-Lexikon

    Computer-aided engineering - Nonlinear static analysis of a 3D structure subjected to plastic deformations Computer aided engineering (CAE) is the broad usage of computer software to aid in engineering tasks. … Wikipedia

    computer-aided engineering - kompiuterinis konstravimas statusas T sritis automatika atitikmenys: angl. CAE; computer aided engineering vok. CAE; rechnergestütztes Engineering, n rus. компьютеризованное конструирование, n pranc. I.A.O.; ingénierie assistée par ordinateur, f … Automatikos terminų žodynas

    Computer Aided Engineering - Zu diesem Stichwort gibt es keinen Artikel. Möglicherweise ist „computer aided engineering“ gemeint. Kategorie: Wikipedia:Falschschreibung … Deutsch Wikipedia

    computer-aided engineering - in industry, the integration of design and manufacturing into a system under the direct control of digital computers. CAE combines the use of computers in industrial design work, computer aided design (CAD), with their use in manufacturing… … Universalium

    computer-aided engineering - /kəmˌpjutər eɪdəd ɛndʒəˈnɪərɪŋ/ (say kuhm.pyoohtuhr ayduhd enjuh nearring) noun engineering which uses computers to assist especially in the collection and analysis of data but also in the production of graphics as in computer aided design. Also … Australian English dictionary

Функции CAE -систем довольно разнообразны, так как связаны с проектными процедурами анализа, моделирования , оптимизации проектных решений. В состав машиностроительных CAE-систем прежде всего включают программы для выполнения следующих процедур:

    моделирование полей физических величин, в том числе анализ прочности, который чаще всего выполняется в соответствии с МКЭ ;

    расчет состояний моделируемых объектов и переходных процессов в них средствами макроуровня ;

    имитационное моделирование сложных производственных систем на основе моделей массового обслуживания и сетей Петри .

Основными частями программ анализа с помощью МКЭ являются библиотеки конечных элементов, препроцессор, решатель и постпроцессор.

Библиотеки конечных элементов (КЭ) содержат модели КЭ - их матрицы жесткости . Очевидно, что модели КЭ будут различными для разных задач (анализ упругих или пластических деформаций, моделирование полей температур, электрических потенциалов и т.п.), разных форм КЭ (например, в двумерном случае - треугольные или четырехугольные элементы), разных наборов координатных функций .

Исходные данные для препроцессора - геометрическая модель объекта, чаще всего получаемая из подсистемы конструирования. Основная функция препроцессора - представление исследуемой среды (детали) в сеточном виде, т.е. в виде множества конечных элементов.

Решатель - программа, которая ассемблирует (собирает) модели отдельных КЭ в общую систему алгебраических уравнений и решает эту систему одним из методов разреженных матриц .

Постпроцессор служит для визуализации результатов решения в удобной для пользователя форме. В машиностроительных САПР это графическая форма. Пользователь может видеть исходную (до нагружения) и деформированную формы детали, поля напряжений, температур, потенциалов и т.п. в виде цветных изображений, в которых палитра цветов или интенсивность свечения характеризуют значения фазовой переменной .

Основные функции cad-систем

Функции CAD -систем в машиностроении подразделяют на функции двухмерного (2D) и трехмерного (3D) проектирования. К функциям 2D относят черчение, оформление конструкторской документации; к функциям 3D - получение трехмерных геометрических моделей, метрические расчеты, реалистичную визуализацию, взаимное преобразование 2D и 3D моделей. Трехмерные модели представляют в виде описания поверхностей, ограничивающих деталь, или указанием элементов пространства, занимаемых телом детали. Модели поверхностей сложной формы получают с помощью разновидностей кинематического метода , к которым относят вытягивание заданного плоского контура по нормали к его плоскости, протягивание контура вдоль произвольной пространственной кривой, вращение контура вокруг заданной оси, натягивание поверхности между несколькими заданными сечениями. В случае построения скульптурных поверхностей , проходящих через заданные точки пространства, применяют модели в форме Безье , а при требованиях высокой гладкости поверхности - модели в форме B-сплайнов . Синтез моделей сборок выполняют применением операций позиционирования и теоретико-множественных операций пересечения, объединения, вычитания к библиотечным элементам и вновь созданным моделям комплектующих деталей. В ряде систем предусмотрено также выполнение операций компоновки и размещения оборудования, проведения соединительных трасс и т.п.

К важным характеристикам CAD-систем относятся параметризация и ассоциативность . Параметризация подразумевает использование геометрических моделей в параметрической форме, т.е. при представлении части или всех параметров объекта не константами, а переменными. Параметрическая модель , находящаяся в базе данных, легко адаптируется к разным конкретным реализациям и потому может использоваться во многих конкретных проектах. При этом появляется возможность включения параметрической модели детали в модель сборочного узла с автоматическим определением размеров детали, диктуемых пространственными ограничениями. Эти ограничения в виде математических зависимостей между частью параметров сборки отражают ассоциативность моделей.

Параметризация и ассоциативность играют важную роль при проектировании конструкций узлов и блоков, состоящих из большого числа деталей. Действительно, изменение размеров одних деталей оказывает влияние на размеры и расположение других. Благодаря параметризации и ассоциативности изменения, сделанные конструктором в одной части сборки, автоматически переносятся в другие части, вызывая изменения соответствующих геометрических параметров в этих частях.

Корректные синтез и редактирование 3D твердотельных моделей изделий возможны с помощью нескольких методов.

Наиболее очевидный метод - задание проектировщиком изделия ограничений и условий, накладываемых на параметры модели и отражающих требования непересечения тел, соосности отверстий, компланарности, перпендикулярности и т.п.

В большинстве современных MCAD используется метод, основанный на использовании дерева построения модели. Деревом построения называют историю моделирования сборки, другими словами, последовательность операций создания модели, упорядоченную по времени их совершения. Согласно этому методу внесение изменений в ту или иную часть модели подразумевает переход в ту вершину дерева, которая соответствует изменяемой части, и после внесения изменений повторное выполнение всех последующих операций синтеза.

Третий способ - синхронное моделирование , основанное на автоматическом определении, благодаря применению экспертных систем , тех ограничений, которые в первом методе задаются пользователем. В результате упрощается работа конструктора, не требуются затраты времени на перестроение дерева модели.

САЕ-системы

САЕ-системы - это общий термин для обозначения информационного обеспечения автоматизированного анализа проекта, имеющего целью обнаружение ошибок (прочностные расчеты, коллизии кинематики и т.п.) или оптимизацию характеристик изделия.

Системы расчета и инженерного анализа (САЕ) являются наиболее верным средством обоснования принятия инженерных (конструкторских и технологических) решений и охватывают широкий спектр задач: расчеты будущего изделия на прочность (устойчивость, резонансные колебания, тепловой анализ), решение задач, связанных с течением жидкостей и газов.

Системы компьютерного инженерного анализа позволяют оценить работоспособность принятых решений и оптимизировать разрабатываемую конструкцию (сократить стоимость и сроки изготовления). В последние годы наметилась тенденция более узкой специализации фирм-разработчиков программных средств анализа. Мировыми лидерами в области разработки, поставки и сопровождения программных систем инженерного анализа машиностроительных изделий являются MSC, Software Corporation, SAMTECH, ANSYS и некоторые другие.

Критерии сравнения САЕ-систем:

Используемый математический метод представления геометрии;

Наличие встроенного генератора сетки;

Функциональные возможности;

Возможность импорта данных из различных CAD-систем.

Для проведения какого-либо вида анализа, вначале, в CAD - системе на основе точной геометрической модели создается расчетная (упрощенная) модель путем удаления тех конструктивных элементов, которые не оказывают существенного влияния на результаты анализа. Расчетная модель передается в пакет анализа при помощи стандартных интерфейсов. Отдельные пакеты анализа имеют внутренние средства построения геометрической модели, с помощью которых может быть решена задача моделирования простых форм.

Примеры пакетов, перечень основных задач, решаемых с их помощью, и фирм, выполнивших разработку приведены ниже:

Euler - динамический анализ многокомпонентных механических систем (Автомеханика);

ИСПА - расчет и анализ на прочность (АЛЕКСОФТ);

ПОЛИГОН - конечно-элементная система для моделирования литейных процессов: гидродинамические, тепловые и усадочные процессы в 3D - постановка (ЦНИИ материалов);

Риман - расчет и анализ напряженно-деформированного состояния конструкций, решение упругих и пластических задач, том числе штамповки и ударных напряжений (ПроГруппа);

АРМ WinMachine - комплекс программ для проектирования и расчетов деталей машин, анализа напряженно-деформированного состояния конструкций и их элементов методом конечных элементов (НТЦ АПМ);

Диана - анализ конструкций и их элементов (НИЦ АСК);

GasDinamics Tool - моделирование газодинамических процессов (Тульский гос.университет).

Отдельную группу программного обеспечения инженерного анализа составляют пакеты, предназначенные для анализа динамических процессов. К этой группе относятся ADAMS, МВТУ, ПА-9 и др.

Пакет ADAMS (Mechanical Dynamics, Inc.) может использоваться для динамического и кинематического анализа сложных механических схем механизмов, статического и модального анализа. При помощи этого пакета могут решаться задачи, например, стыковки космического аппарата, динамики полета и посадки и т.п. Двусторонняя связь с конечно-элементными пакетами (ANSYS, MSC.NASTRAN, ABAQUS, I-DEAS) позволяет встраивать неограниченное число конечно-элементных моделей в механизм для учета влияния деформируемости на поведение системы. В ADAMS обеспечен обмен информацией с CAD-системами и пакетами математических методов (MATLAB, MATRIX, EASY5).

Вопросы для самопроверки

1. Перечислите основные этапы ЖЦ радиоэлектронных изделий. Какие подсистемы обеспечивают реализацию каждого из этапов?

2. В чем заключаются технологии сквозного, нисходящего и параллельного проектирования?

3. Какие модули содержит CAD-система конструкторского проектирования. Каковы ее основные функции?

4. Какие задачи решает CAM-система технологической подготовки производства?

5. На каком этапе ЖЦ РЭС применяются системы инженерного анализа (САЕ-системы)? Каков круг задач этих систем?

6. Какие из современных систем поддержки процесса проектирования РЭС Вам знакомы? Охарактеризуйте их.


Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ ИНАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

(национальный исследовательский университет)

Филиал БОУ ВПО «ЮУрГУ» (НИУ) в г. Усть-Катаве

Кафедра «Машиноведение»

Специальность 151900 - Технология машиностроения

Реферат

«Особенности CAD/CAM/САЕ -систем»

по дисциплине «Основы технологии машиностроения»

Руководитель:

Сергеев С.В.

Выполнил:

Кузин С. С.

Усть-Катав 2015

Введение

1. Назначение систем моделирования

2. История развития

3. Общая классификация CAD/CAM/CAE-систем

4. Выгоды от применения

Заключение

Библиографический список

Введение

Сегодня под словом «САПР» понимается гораздо большее, нежели просто программно-аппаратный комплекс для выполнения проектных работ с использованием компьютеров и зачастую этот термин используется, прежде всего, как удобная аббревиатура для обозначения большого класса систем автоматизации. Это связано с тем, что за последние 10-15 лет такие системы прошли большой путь развития от «электронных кульманов» первого поколения, предназначенных в основном для машинной подготовки проектной документации, до современных систем, автоматизирующих практически все процессы, связанные с проектированием и изготовлением новых изделий, будь то деталь, узел машины или целый автомобиль, самолет или здание.

Разумеется, чем сложнее разрабатываемое изделие, тем более сложной и многофункциональной должна быть САПР. Системы проектирования в масштабах предприятия за рубежом принято определять как CAD /CAM /САЕ - системы, функции автоматизированного проектирования распределяются в них следующим образом модули CAD - для геометрического моделирования и машинной графики, модули подсистемы САМ - для технологической подготовки производства, а модули СAЕ - для инженерных расчетов и анализа с целью проверки проектных решений. Таким образом, современная система CAD/CAM/CAE способна обеспечить автоматизированную поддержку работ инженеров и специалистов на всех стадиях цикла проектирования и изготовления новой продукции.

В основу каждой САПРзаложена определенная математическая модель, формализующая описание и функционирование проектируемых изделий, и процессы их изготовления. И природа изделий, производственные процессы накладывают свою специфику на методы - их математического моделирования. В конечном счете, эта специфика приводит к существенному различию, систем проектирования и условия их использований.

1 . Назначение

CAD-системы предназначены для решения конструкторских задач и оформления конструкторской документации (более привычно они именуются системами автоматизированного проектирования САПР). Как правило, в современные CAD-системы входят модули моделирования трехмерной объемной конструкции (детали) и оформления чертежей и текстовой конструкторской документации (спецификаций, ведомостей и т.д.). Ведущие трехмерные CAD-системы позволяют реализовать идею сквозного цикла подготовки и производства сложных промышленных изделий.

В свою очередь, CAM -системы предназначены для проектирования обработки изделий на станках с числовым программным управлением (ЧПУ) и выдачи программ для этих станков (фрезерных, сверлильных, эрозионных, пробивных, токарных, шлифовальных и др.). CAM -системы еще называют системами технологической подготовки производства. В настоящее время они являются практически единственным способом для изготовления сложнопрофильных деталей и сокращения цикла их производства. В CAM - системах используется трехмерная модель детали, созданная в CAD -системе.

САЕ -системы представляют собой обширный класс систем, каждая из которых позволяет решать определенную расчетную задачу (группу задач), начиная от расчетов на прочность, анализа и моделирования тепловых процессов до расчетов гидравлических систем и машин, расчетов процессов литья. В CAЕ -системах также используется трехмерная модель изделия, созданная в CAD -системе. CAE -системы еще называют системами инженерного анализа.

Существует некоммерческая отраслевая организация CAD Society занимающаяся вопросами популяризации CAD/CAM/CAE -систем в мире.

2 . История развития

Историю развития рынка CAD/CAM/CAE -систем можно достаточно условно разбить на три основных этапа, каждый из которых длился, примерно, по 10 лет.

Первый этап начался в 70-е гг. В ходе его был получен ряд научно-практических результатов, доказавших принципиальную возможность проектирования сложных промышленных изделий. Во время второго этапа (80-е гг.) появились и начали быстро распространяться CAD/CAM/CAE -системы массового применения. Третий этап развития рынка (с 90-х гг. до настоящего времени) характеризуется совершенствованием функциональности CAD/CAM/CAE -систем и их дальнейшим распространением в высокотехнологичных производствах (где они лучше всего продемонстрировали свою эффективность).

На начальном этапе пользователи CAD/CAM/CAE - систем работали на графических терминалах, присоединенных к мэйнфреймам производства компаний IBM и Control Data , или же мини-ЭВМ PDP/11 (от Digital Equipment Corporation ) и Nova (производства Data General ). Большинство таких систем предлагали фирмы, продававшие одновременно аппаратные и программные средства (в те годы лидерами рассматриваемого рынка были компании Applicon , Auto-Trol Technology , Calma , Computervision и Intergraph ). У мэйнфреймов того времени был ряд существенных недостатков. Например, при разделении системных ресурсов слишком большим числом пользователей нагрузка на центральный процессор увеличивалась до такой степени, что работать в интерактивном режиме становилось трудно. Но в то время пользователям CAD/CAM/CAE -систем ничего, кроме громоздких компьютерных систем с разделением ресурсов (по устанавливаемым приоритетам), предложить было нечего, т.к. микропроцессоры были еще весьма несовершенными. По данным Dataquest , в начале 80-х гг. стоимость одной лицензии CAD -системы доходила до $90000.

Развитие приложений для проектирования шаблонов печатных плат и слоев микросхем сделало возможным появление схем высокой степени интеграции (на базе которых и были созданы современные высокопроизводительные компьютерные системы). В течение 80-х гг. был осуществлен постепенный перевод CAD -систем с мэйнфреймов на персональные компьютеры (ПК). В то время ПК работали быстрее, чем многозадачные системы, и были дешевле. По данным Dataquest , к концу 80-х гг. стоимость CAD -лицензии снизилась, примерно, до $20000.

Cледует сказать, что в начале 80-х гг. произошло расслоение рынка CAD-систем на специализированные секторы. Электрический и механический сегменты CAD-систем разделились на отрасли ECAD и MCAD. Разошлись по двум различным направлениям и производители рабочих станций для CAD-систем, созданных на базе ПК:

ѕ часть производителей сориентировалась на архитектуру IBM PC на базе микропроцессоров Intel х86 ;

ѕ другие производители предпочли ориентацию на архитектуру Motorola (ПК ее производства работали под управлением ОС Unix от AT&T , ОС Macintosh от Apple и Domain OS от Apollo ).

Производительность CAD -систем на ПК в то время была ограничена 16-разрядной адресацией микропроцессоров Intel и MS DOS . Вследствие этого, пользователи, создающие сложные твердотельные модели и конструкции, предпочитали использовать графические рабочие станции под ОС Unix с 32-разрядной адресацией и виртуальной памятью, позволяющей запускать ресурсоемкие приложения.

К середине 80-х гг. возможности архитектуры Motorola были полностью исчерпаны. На основе передовой концепции архитектуры микропроцессоров с усеченным набором команд (Reduced Instruction Set Computing - RISC ) были разработаны новые чипы для рабочих станций под ОС Unix (например, Sun SPARC ). Архитектура RISC позволила существенно повысить производительность CAD -систем.

С середины 90-х гг. развитие микротехнологий позволило компании Intel удешевить производство своих транзисторов, повысив их производительность. Вследствие этого появилась возможность для успешного соревнования рабочих станций на базе ПК с RISC/Unix -станциями. Системы RISC/Unix были широко распространены во 2-й половине 90-х гг., и их позиции все еще сильны в сегменте проектирования интегральных схем. Зато сейчас ОС MS Windows практически полностью доминирует в областях проектирования конструкций и механического инжиниринга, проектирования печатных плат и др. По данным Dataquest и IDC , начиная с 1997 г. рабочие станции на платформе Windows NT/Intel (Wintel ) начали обгонять Unix -станции по объемам продаж. За прошедшие с начала появления CAD/CAM/CAE -систем годы стоимость лицензии на них снизилась до нескольких тысяч долларов (например, $6000 у Pro/Engineer ).

3 . Общая классификация CAD/CAM/CAE истем

За почти 30-летний период существования CAD/CAM/CAE -систем сложилась их общепринятая международная классификация:

ѕ Чертежно-ориентированные системы, которые появились первыми в 70-е гг. (и успешно применяются в некоторых случаях до сих пор).

ѕ Системы, позволяющие создавать трехмерную электронную модель объекта, которая дает возможность решения задач его моделирования вплоть до момента изготовления.

ѕ Системы, поддерживающие концепцию полного электронного описания объекта (EPD ). EPD это технология, которая обеспечивает разработку и поддержку электронной информационной модели на протяжении всего жизненного цикла изделия, включая маркетинг, концептуальное и рабочее проектирование, технологическую подготовку, производство, эксплуатацию, ремонт и утилизацию. При применении EPD -концепции предполагается замещение компонентно-центрического последовательного проектирования сложного изделия на изделие-центрический процесс, выполняемый проектно-производственными командами, работающими коллективно. Вследствие разработки EPD -концепции и появились основания для превращения автономных CAD -, CAM - и CAE -систем в интегрированные CAD/CAM/CAE -системы.

Традиционно существует также деление CAD/CAM/CAE -систем на системы верхнего, среднего и нижнего уровней. Cледует отметить, что это деление является достаточно условным, т.к. сейчас наблюдается тенденция приближения систем среднего уровня (по различным параметрам) к системам верхнего уровня, а системы нижнего уровня все чаще перестают быть просто двумерными чертежно-ориентированными и становятся трехмерными.

Примерами CAD/CAM-систем верхнего уровня являются Pro/Engineer , Unigraphics , CATIA , EUCLID , I-DEAS (все они имеют расчетную часть CAE ).

В настоящее время на рынке широко используются два типа твердотельного геометрических ядра (Parasolid от фирмы Unigraphics Solutions и ACIS от Spatial Technology ). Наиболее известными CAD/CAM -системами среднего уровня на основе ядра ACIS являются: ADEM (Omega Technology ); Cimatron (Cimatron Ltd .); Mastercam (CNC Software , Inc .); AutoCAD 2000 , Mechanical Desktop и Autodesk Inventor (Autodesk Inc .); Powermill (DELCAM ); CADdy++ Mechanical Design (Ziegler Informatics GmbH ); семейство продуктов Bravo (Unigraphics Solutions ), IronCad (VDS ) и др. К числу CAD/CAM -систем среднего уровня на основе ядра Parasolid принадлежат, в частности, MicroStation Modeler (Bentley Systems Inc .); CADKEY 99 (CADKEY Corp.); Pro/Desktop (Parametric Technology Corp .); SolidWorks (SolidWorks Corp .); Anvil Express (MCS Inc .), Solid Edge и Unigraphics Modeling (Unigraphics Solutions ); IronCAD (VDS ) и др.

CAD -системы нижнего уровня (например, AutCAD LT , Medusa , TrueCAD , КОМПАС, БАЗИС и др.) применяются только при автоматизации чертежных работ.

4 . Выгоды от применения

CAD/CAM/CAE -системы занимают особое положение среди других приложений, поскольку представляют индустриальные технологии, непосредственно направленные в наиболее важные области материального производства. В настоящее время общепризнанным фактом является невозможность изготовления сложной наукоемкой продукции (кораблей, самолетов, танков, различных видов промышленного оборудования и др.) без применения CAD/CAM/CAE -систем. За последние годы CAD/CAM/CAE -системы прошли путь от сравнительно простых чертежных приложений до интегрированных программных комплексов, обеспечивающих единую поддержку всего цикла разработки, начиная от эскизного проектирования и заканчивая технологической подготовкой производства, испытаниями и сопровождением. Современные CAD/CAM/CAE -системы не только дают возможность сократить срок внедрения новых изделий, но и оказывают существенное влияние на технологию производства, позволяя повысить качество и надежность выпускаемой продукции (повышая, тем самым, ее конкурентоспособность). В частности, путем компьютерного моделирования сложных изделий проектировщик может зафиксировать нестыковку и экономит на стоимости изготовления физического прототипа. Даже для такого относительно несложного изделия, как телефон, стоимость прототипа может составлять несколько тысяч долларов, создание модели двигателя обойдется в полмиллиона долларов, а полномасштабный прототип самолета будет стоить уже десятки миллионов долларов.

Например, широко известен проект разработки компанией Shorts Brothers фюзеляжа для самолета бизнес-класса Learjet 45 при помощи современных CAD/CAM/CAE -систем. Результаты выполнения проекта просто впечатляют. Ранее компания Shorts использовала в проектно-конструкторских работах проволочное моделирование деталей. В создаваемых Shorts Brothers фюзеляжах самолетов обычно насчитывалось до 9500 структурных деталей. Подобные проекты могли потребовать более 440000 человеко-дней (до 4-х лет для завершения проекта).

Фюзеляж Learjet 45 оказался не только наиболее сложным среди существующих, но и был разработан в значительно меньшие сроки (на 40%), чем его предшественники. Кроме того, примерно в 10 раз было улучшено качество деталей и самой сборки фюзеляжа, а общее число деталей сокращено на 60% (при снижении объема основных переделок на 90% по сравнению с предыдущими проектами). В целом, компания Shorts смогла уменьшить число компонентов с 9500 до 3700 (на 60%). Полное время на проектирование и технологическую подготовку производства было сокращено до 125000 человеко-дней. Общее время разработки и технологической подготовки производства до 60000 человеко-дней, а весь цикл разработки типового фюзеляжа сократился с 4-х лет до 1,5-2 лет.

Отсюда следуют преимущества от применения CAD/CAM/CAE -систем:

ѕ Совершенствование методов проектирования, в частности, использование методов многовариантного проектирования и оптимизации для поиска эффективных вариантов и принятия решений.

ѕ Повышение доли творческого труда инженера-проектировщика.

ѕ Повышение качества проектной документации.

ѕ Совершенствование управления процессом разработки проектов.

ѕ Частичная замена натурных экспериментов и макетирования моделированием на ЭВМ.

ѕ Уменьшение объёма испытаний и доводки опытных образцов в результате повышения уровня достоверности проектных решений и, следовательно, снижение временных затрат.

система автоматизированное проектирование

Заключение

Потребности современного производства диктуют необходимость глобального использования информационных компьютерных технологий на всех этапах жизненного цикла изделия: от предпроектных исследований до утилизации изделия. Основу информационных технологий в проектировании и производстве сложных объектов и изделий составляют сегодня полномасштабные полнофункциональные промышленные САПР (CAD/CAM/CAE - системы). Активное использование во всем мире «легких» и «средних» САПР на персональных компьютерах для подготовки чертежной документации и управляющих программ для станков с ЧПУ и сближение возможностей персональных компьютеров и «рабочих станций» в автоматизации проектирования подготовило две тенденции в разработке и использовании САПР, которые наблюдаются в последнее время:

ѕ применение полномасштабных САПР в различных отраслях промышленности для проектирования и производства изделий различной сложности;

ѕ интеграция САПР с другими информационными технологиями.

Эти тенденции позволяют говорить, что уже в самом ближайшем будущем эффективность производства будет во многом определяться эффективностью использования на предприятиях промышленных САПР.

Библиографический список

1. Кунву Ли. Основы САПР. - СПб.: Питер, 2004.

2. Б. Хокс. Автоматизированное проектирование и производство. - М.: Мир, 1991.

3. «Компьютер Пресс», NN «1-12,1997 - ISSN 0868-6157.

4. В. Клишин, В. Климов, М. Пирогова. Интегрированные технологии Computervision. Открытые системы, # 2, 1997. с. 37-42.

Размещено на Allbest.ru

...

Подобные документы

    История развития рынка CAD/CAM/CAE-систем. Развитие приложений для проектирования шаблонов печатных плат и слоев микросхем. Проект разработки компанией Shorts Brothers фюзеляжа для самолета бизнес-класса Learjet 45, преимущества от применения программ.

    контрольная работа , добавлен 14.04.2014

    AutoCAD как одна из самых популярных графических систем автоматизированного проектирования, круг выполняемых ею задач и функций. Технология автоматизированного проектирования и методика создания чертежей в системе AutoCAD. Создание и работа с шаблонами.

    лекция , добавлен 21.07.2009

    Предпосылки внедрения систем автоматизированного проектирования. Условная классификация САПР. Анализ программ, которые позволяют решать инженерные задачи. Система управления жизненным циклом продукта - Product Lifecycle Management, ее преимущества.

    контрольная работа , добавлен 26.09.2010

    Анализ тенденций развития информационных технологий. Назначение и цели применения систем автоматизированного проектирования на основе системного подхода. Методы обеспечения автоматизации выполнения проектных работ на примере ЗАО "ПКП "Теплый дом".

    курсовая работа , добавлен 11.09.2010

    курсовая работа , добавлен 22.11.2009

    Анализ существующих систем автоматизированного проектирования. Преимущества и недостатки универсальных сборочных приспособлений, их конструирование и сборка, современное информационное обеспечение. Создание базы данных для САПР сборочных приспособлений.

    дипломная работа , добавлен 26.03.2012

    Концепция автоматизированного проектирования. Внедрение в практику инженерных расчетов методов машинной математики. Создание автоматизированных рабочих мест. Принцип декомпозиции при проектировании сложных конструкций, использование имитационных систем.

    реферат , добавлен 30.08.2009

    Системы автоматического проектирования. Сравнительный анализ средств для проектирования автоматизированных информационных систем. Экспорт SQL-кода в физическую среду и наполнение базы данных содержимым. Этапы развития и характеристика Case-средств.

    курсовая работа , добавлен 14.11.2017

    Изучение истории создания Mentor Graphics Corporation, которая является одним из мировых лидеров в области систем автоматизированного проектирования. Функции Altium Designer - комплексной системы автоматизированного проектирования радиоэлектронных средств

    реферат , добавлен 08.09.2015

    Создание программных комплексов для систем автоматизированного проектирования с системами объемного моделирования и экспресс-тестами. SolidWorks - мировой стандарт автоматизированного проектирования. Пользовательский интерфейс, визуализация модели.