Что же такое ПИД-регулятор? Прежде всего это алгоритм, который может быть реализован как программно, так и аппаратно. Сегодня мы рассмотрим ПИД-регулятор как законченное устройство, которое может быть использовано для построения систем управления и автоматики. В качестве примера возьмём устройство компании «ОВЕН» ТРМ210. Но для начала немного теории…

Что такое ПИД-регулятор?

ПИД-регулятор относится к . Аббревиатура «ПИД» расшифровывается как «пропорционально-интегрально-дифференциальный» (регулятор) — эти три слова полностью описывают принцип его действия. Общая структурная схема управления выглядит так:

На вход регулятора подаётся измеренная датчиком физическая величина (температура, влажность и т.д.), регулятор в соответствии со своим алгоритмом (реализующим функцию преобразования) выдаёт управляющее воздействие. Это вызывает изменение регулируемой величины (например, температуры или влажности). На следующем шаге регулятор снова делает замер регулируемого параметра и сравнивает эту величину с заданной, вычисляя ошибку регулирования. Новое управляющее воздействие формируется с учётом ошибки регулирования на каждом шаге. Значение величины, которое нужно поддерживать, задаётся пользователем.

Функция преобразования ПИД-регулятора выглядит следующим образом:

Где E — ошибка регулирования (разница между заданным значением регулируемой величины и фактическим)

В этой формуле, как вы уже догадались, есь три составляющие: интегральная пропорциональная и дифференциальная. Каждая из них имеет соответствующий коэффициент (Кп, Ки, Кд). Чем больше коэффициент, тем больший вклад данная составляющая вносит в работу регулятора. Теперь разберёмся за что отвечает каждая из них.

Пропорциональная: «Чем больше — тем больше, чем меньше — тем меньше»

Тут всё просто. Пропорциональная составляющая просто умножает величину ошибки на свой коэффициент. Например, чем больше заданная температура по сравнению с текущей, тем большую мощность регулятор установит на обогревателе.

Интегральная: «Учтём предыдущий опыт»

Интегральная составляющая необходима, чтобы учитывать предыдущий опыт работы регулятора и делать управление всё точнее и точнее со временем. Как известно, интеграл — это сумма. Регулятор суммирует все предыдущие значения ошибки регулирования и делает на них поправку. Как только система выйдет на заданный режим (например, достигнет заданной температуры) ошибка регулирования будет близка к нулю и интегральная часть со временем будет всё меньше влиять на работу регулятора. Говоря простым языком, интегральная составляющая стремиться исправить ошибки регулирования за предыдущий период.

Дифферинциальная: «Учтём скорость изменения»

Эта составляющая берёт производную от измеряемой величины. Физический смысл производной- это скорость изменения физической величины. Например, чем быстрее растёт (или падает) температура в системе, тем больше будет соответствующая производная. Дифферинциальная составляющая позволяет регулятору по-разному реагировать на резкие и плавные изменения регулируемой величины в системе, тем самым избегая «раскачивания» этой величины.

ТРМ210: Функциональная схема прибора

Краткий экскурс в теорию закончен, вернёмся к практике и рассмотрим прибор ТРМ210, реализующий данный алгоритм.

Вот его функциональная схема:

Информация с датчика преобразуется прибором с помощью шкалы масштабирования, проходит фильтрацию и коррекцию. Это необходимо, чтоб ПИД-алгоритм получил измеренное значение в удобном и понятном для него виде.

Значение измеренной величины отображается на дисплее прибора.

Управляющее воздействие регулятора может быть импульсным или аналоговым. В первом случае управляющее воздействие регулятора заключается в изменении ширины генерируемых на выходе импульсов. Во втором случае регулятор выдаёт сигнал унифицированного напряжения в диапазоне 0…10 В или тока в диапазоне 4…20 мА. С помощью этих сигналов можно управлять практически любым устройством.

В ТРМ210 предусмотрен блок сигнализации, который сообщает о выходе физической величины за заданные пределы, замыкая дискретный выход, который, например, может «зажигать» лампу «Авария».

Также в приборе имеется блок регистратора, который может передавать измеренное значение физической величины любому другому прибору или устройству с помощью токового сигнала 4…20 мА.

В дополнение ко всему выше перечисленному регулятор имеет «на борту» интерфейс RS-485, который позволяет читать с прибора значения измеряемой величины, выходной мощности регулятора и любых конфигурируемых параметров. Это может пригодиться, если нужно передавать информацию о работе прибора в диспетчерский пункт.

Пример использования

Допустим, необходимо реализовать проветривание помещения следующим образом: чем больше температура внутри, тем больше нужно открыть окно. Для этого установим на окно привод, который будет плавно поворачиваться на заданный угол, а управляться будет сигналом тока 4…20 мА (такой управляющий сигнал поддерживают практически все подобные приводы). То есть, если подать на привод сигнал 4 мА — он полностью закроет окно, а 20 мА — полностью его откроет.

Для измерения температуры можно взять любой из поддерживаемых ТРМ210 — это практически любые термопары и любые датчики имеющие унифицированные выходы 0…10 В и 4…20 мА.

Настройка ПИД-регулятора

Прибор ТРМ210 имеет функцию автонастройки. В этом режиме регулятор сам имитирует возмущающие воздействия, отслеживает реакцию системы и исходя из этих данных подстраивает свои коэффициенты. Однако, таким способом настроить регулятор получается далеко не всегда, поскольку регулятор ничего не знает о реальной системе, и генерируемые им тестовые возмущения могут не совпадать с реальными возмущениями, возникающими в этой системе. В таких случаях необходимо подобрать коэффициенты вручную. О том, как это правильно сделать мы расскажем в .

До свидания! Читайте LAZY SMART .

Регулятор - устройство, которое следит за работой объекта управления и вырабатывает для него управляющие(регулирующие) сигналы.

Регуляторы могут быть выполнены в виде отдельного устройства или в виде прикладного пакета в основной программе управляющего устройства.

Аппаратные регуляторыможно разделить:

1.по использованию для работы внешней энергии:

регуляторы прямого действия, не используют внешнюю энергию. Работают за счёт энергии развиваемой датчиком, просты по конструкции, не дороги, но имеют не высокую точность. Используют в простейших системах регулирования.

регуляторы не прямого действия,используют внешнюю энергию для своей работы-это основной вид регуляторов.

2.по виду используемой внешней энергии:

  • электрические;
  • пневматические;
  • гидравлические;
  • комбинированные.

3.по виду регулируемого параметра: регуляторы температуры, давления, уровня, расхода и т. д.

4.по закону регулирования, т.е. по изменению регулирующего воздействия во времени при изменении регулируемого параметра(по виду переходной характеристике регулятора). Эти регуляторы могут быть аппаратного типа(аналоговые) и дигитальные, в виде программного пакета.

Различают следующие виды регулирований:

  • P (П ) - означает « пропорциональный »
  • I (И ) – « интегральный »
  • D (Д ) – « дифференциальный »
  • PI (ПИ ) – « пропорциональный и интегральный »
  • PD (ПД ) – « пропорциональный и дифференциальный »
  • PID (ПИД ) – « пропорциональный, интегральный и дифференциальный »

Свойства и типы регуляторов

1. P-регулятор , пропорциональный регулятор.

Передаточная функция P-регулятора: Gp(s) = Kp. Pегулятор вырабатывает управляющее воздействие на объект пропорционально величине ошибки (чем больше ошибка e, тем больше управляющее воздействие Y= Kp*e).

2. I-регулятор , интегрирующий регулятор.

Передаточная функция I-регулятора: Gi(s) = 1/Ti*s. Управляющее воздействие пропорционально интегралу от ошибки е:

3. D -регулятор , дифференцирующий регулятор.
Передаточная функция
D -регулятора: G d ( s ) = T d * s . D регулятор создаёт управляющее воздействие только при изменении регулируемой величины: Y = T d * de / dt .

У P -регулятора , его называют также статическим,изменение положения РО пропорционально отклонению регулируемого параметра «е » от его заданного значения X 0 .


Преимущества Р-регулятора – его быстродействие (небольшое время регулирования tp ) и высокая устойчивость процесса регулирования.


Недостаток – наличие статической ошибки δ Х,т.е. после окончания процесса регулирования(за время регулирования t p) параметр не возвращается точно к заданному значению, а отличается от заданного на δ Х,что снижает точность регулирования. С увеличением коэффициента усиления Кр, величина δ Хуменьшается, но АСР может потерять устойчивость. При Кр = Кр кр в системе возникают не затухающие колебания с постоянной амплитудой, а при ещё большем Кр, с возрастающей амплитудой. Рис. 93

1 – регулируемый процесс с P регулятором при K p < K p .кр
2 – Регулируемый процесс при
K p = K р.кр

T кр – период не затухающих колебаний при K p = K р.кр

t р – время регулирования для устойчивого процесса

X 0 – начальное значение регулируемого параметра

δ Х – статическая ошибка

У I -регулятора , его называют также a статическим,изменение положения РО пропорционально интегралу от отклонения «е » регулируемого параметра от его заданного значения X 0 . Регулирующий орган будет перемещаться до тех пор, пока параметр не достигнет точно заданного значения, т.е. у него нет статической ошибки δ Х=0. Это его достоинство, но недостатком является его плохая устойчивость, большое время регулирования. Его можно применять на инерционных объектах с самовыравниванием.

У D –регулятора , регулирующее воздействие пропорционально скорости отклонения параметра от задания т.е. производной от отклонения «е ». На рисунке 94 при ступенчатом изменении U(t ), возникает сигнал ошибки е , которыйбудет уменьшаться в процессе регулирования t , до тех пор, пока параметр не достигнет нового значения U(t).t 0 - начало отклонения параметра, t 1- момент срабатывания регулятора без сигнала по производной, «Δ» - зона нечувствитвльности регулятора.

Скорость отклонения в начальный момент большая и поэтому сигнал по скорости будет большим , регулятор сразу начнёт действовать в момент t1 ,ещё до заметного«Δ» отклонения параметра и параметр будет быстрее установлен к заданию U(t) .

Таким образом, этот регулятор имеет повышенное быстродействие – это его достоинство. Недостаток – не стабилен в работе, поэтом отдельно не используется. Но этот принцип используют для повышения качества регулирования PD и PID регуляторов.

Комбинируя простейшие P , I , D , регуляторы, получают PI , PD , PID регуляторы. На практике в основном применяют Р , PI , PID регуляторы

PI - регулятор, комбинация Р и I регуляторов. Имеет достоинства обоих. От Р – хорошая устойчивость, от I δ Х=0.

PD - регулятор, комбинация Р и D регуляторов. Имеет достоинства обоих. От Р – хорошая устойчивостьи, от D повышенное быстродействие, но сохраняется статическая ошибка δ Х, как у Р регулятора.

PID - регулятор, комбинация Р, I и D регуляторов. Имеет достоинства троих.От Р – хорошая устойчивостьи, от I – отсутствие статической ошибки δ Х=0, от D повышенное быстродействие.

PID - регулятор по своим возможностям наиболее универсален. В настоящее время в основном применяются электронные и цифровые PID –регуляторы, на основе которого можно осуществлять различные законы регулирования.

Структурная схема PID регулятора

На Рис.95показана структурная схема PID регулятора

Рис. 95 Структурная схема PID регулятора

K p – коэффициент усиления регулятора

T i – постоянная интегрирования

T d – постоянная дифференцирования

Это настроечные параметры регуляторов

Переходные характеристики регуляторов показаны на Рис.96. Для P, I и D регуляторов они аналогичны характеристикам соответствующих типовых звеньев. Для остальных регуляторов, характеристики получают сложением характеристик P, I, и D регуляторов.

Переходные характеристики показывают как изменяется регулирующее воздействие регулятора Y во времени при отклонении регулируемого параметра X от задания т.е. при появлении сигнала ошибки «е».

При отклонении, уменьшении температуры в объекте (X) Р регулятора , регулирующий клапан приоткроется (Y) пропорционально отклонению температуры и остановится. Подача тепла увеличится и температура , быстро восстановится, но не точно, возникнет статическая ошибка δ Х.

У PID регулятора, за счёт Р и D составляющих, клапан сначала сильно откроется, обеспечивая быструю подачу тепла, но затем, чтобы не возникло перегрева, начнёт прикрываться, обеспечивая подачу нужного тепла в объект. Затем вступает в действие I составляющая, которая приоткрывает клапан до тех пор, пока не будетустранена статическая ошибка δ Х. Таким образом D составляющая увеличивает быстродействие регулятора, а I составляющая убирает статическую ошибку δ Х.

Контрольные вопросы

1.Если у Р регулятора Кр увеличить, то как изменится δ Х?

2.Что даёт I составляющая у регулятора?

3.На какое свойство и как влияет D составляющая у регулятора?

4.Какой регулятор по качеству самый худший и самый лучший.?


Электрические схемы регуляторов

На Рис. 97 показаны возможные варианты реализации регуляторов на операционных усилителях. Р регулятор реализован на DA1 .

Коэффициент усиления Р составляющей Кр = Rp/ R1 . В схеме ,PID регулятора на DA1 выполнен повторитель Р составляющей т.к. К = R/R=1 , а функции усилителя выполняет DA 4, котораяодновременно являетсясравнивающим устройством , котор oe сравнивает сигнал от задатчика +U с сигналом от датчика - Ux. Их разность е= U - Ux подаётся на вход DA . Знак е зависит от направления измененияпараметра. Настроечные параметры для I части Т i = Ri С i , и для D части Td=RdCd. На DA5 Выполнен сумматор, который суммирует все составляющие и на выходе получаем сигнал, изменяющийся по PID закону.

P регулятор

I регулятор

D регулятор

PID регулятор

Рис. 97Электрические схемы P, I, D, и PID регуляторов

Закон регулирования электронного Т i, Т d.

1 – без регулятора

2 – I регулятор

3 – P регулятор

4 – PI регулятор

5 – PD регулятор

6 – PID регулятор

X 0 - начальное значение регулируемого параметра

δ X – статическая ошибка

Значительно улучшить точность регулирования можно применением ПИД-закона (Пропорционально-Интегрально-Дифференциальный закон регулирования).
Для реализации ПИД-закона используются три основные переменные:
P – зона пропорциональности, %;
I – время интегрирования, с;
D – время дифференцирования, с.
Ручная настройка ПИД-регулятора (определение значений параметров Р, I, D), обеспечивающая требуемое качество регулирования, достаточно сложна и на практике редко используется. ПИД-регуляторы серии UT/UP обеспечивают автоматическую настройку ПИД-параметров под конкретный процесс регулирования, сохраняя при этом возможность их ручной корректировки.

Пропорциональная составляющая
В зоне пропорциональности, определяемой коэффициентом Р, сигнал управления будет изменяться пропорционально разнице между уставкой и действительным значением параметра (рассогласованию):

сигнал управления = 100/P E,

где E – рассогласование.
Коэффициент пропорциональности (усиления) К является величиной обратнопропорциональной Р:

Зона пропорциональности определяется относительно заданной уставки регулирования, и внутри этой зоны сигнал регулирования изменяется от 0 до 100%, т. е. при равенстве действительного значения и уставки выходной сигнал будет иметь значение 50%.

где Р – зона пропорциональности;
ST – уставка регулирования.
Например:
диапазон измерения 0…1000 °С;
уставка регулирования ST = 500 °С;
зона пропорциональности P = 5%, что составляет 50 °С (5% от 1000 °С);
при значении температуры 475 °С и ниже управляющий сигнал будет иметь величину 100%; при 525 °С и выше – 0%. В диапазоне 475…525 °С (в зоне пропорциональности) управляющий сигнал будет изменяться пропорционально величине рассогласования с коэффициентом усиления К = 100/Р = 20.
Уменьшение значения зоны пропорциональности Р увеличивает реакцию регулятора на рассогласование, т. е. малому рассогласованию будет соответствовать большее значение управляющего сигнала. Но при этом, из-за большого усиления, процесс принимает колебательный характер около значения уставки, и точного регулирования добиться не удастся. При излишнем увеличении зоны пропорциональности регулятор будет слишком медленно реагировать на образующееся рассогла­сование и не сможет успевать отслеживать динамику процесса. Для того, чтобы компенсировать эти недостатки пропорционального регулирования, вводится дополнительная временная характеристика – интегральная составляющая.

Интегральная составляющая
Определяется постоянной времени интегрирования I, является функцией времени и обеспечивает изменение коэффициента усиления (сдвиг зоны пропорциональности) на заданном промежутке времени.


сигнал управления = 100/P E + 1/I ∫ E dt.

Как видно из рисунка, если пропорциональная составляющая закона регулирования не обеспечивает уменьшение рассогласования, то интегральная составляющая начинает на периоде времени I плавно увеличивать коэффициент усиления. Через период времени I процесс этот повторяется. Если же рассогласование мало (или быстро уменьшается), то коэффициент усиления не увеличивается и, в случае равенства значения параметра заданной уставке, принимает какое-то минимальное значение. В этом плане об интегральной составляющей говорят как о функции автоматического выключения регулирования. В случае регулирования по ПИД-закону переходная характеристика процесса будет представлять собой колебания, постепенно затухающие к значению уставки.

Дифференциальная составляющая
Многие объекты регулирования достаточно инерционны, т. е. имеют задержку реакции на приложенное воздействие (мертвое время) и продолжают реагировать после снятия управляющего воздействия (время задержки). ПИД-регуляторы на таких обьектах будут всегда запаздывать с включением/выключением управляющего сигнала. Для устранения этого эффекта вводится дифференциальная составляющая, определяемая постоянной времени дифференцирования D, и обеспечивается полная реализация ПИД-закона управления. Дифференциальная составляющая есть производная во времени от рассогласования, т. е. является функцией скорости изменения параметра регулирования. В случае, когда рассогласование становится постоянной величиной, дифференциальная составляющая перестает оказывать воздействие на сигнал управления.

сигнал управ. = 100/P E + 1/I ∫ E dt + D d/dt E.

С введением дифференциальной составляющей регулятор начинает учитывать мертвое время и время задержки, заранее изменяя сигнал управления. Это позволяет значительно уменьшить колебания процесса около значения уставки и добиться более быстрого завершения переходного процесса.
Таким образом, ПИД-регуляторы, генерируя управляющий сигнал, учитывают характеристики самого объекта управления, т.е. проводят анализ рассогласования на величину, на продолжительность и скорость изменения. Иными словами, ПИД-регулятор "предвидит" реакцию объекта регулирования на сигнал управления и начинает изменять управляющее воздействие не при достижении значения уставки, а заранее.

5. Передаточная функция какого звена представлена: К(р) = К/Тр

ПИД (или английская аббревиатура — PID) – это регулятор, осуществляющий пропорциональное, интегрирующее и дифференциальное управление. ПИД регуляторы находят широкое применение в современных системах точного контроля, таких как управление термосистемами и системами позиционирования. Использование ПИД регуляторов помогает уменьшить энергетические потери на настройку системы и обеспечивают более быстрый выход на требуемые параметры.

В общем случае ПИД регулятор получает значение определяющего параметра от объекта (Рис. 1) и воздействует на управление, состояние которого влияет на исходный параметр. Классическим примером применения ПИД регулятора являются управление термосистемой, будь это нагреватель или холодильная установка. Данный пример интересен тем, что нагрев или охлаждение процессы достаточно инертные и зачастую снижение температуры получается естественным путем из-за потерь

ПИД регуляторы применяются в системах, математическое описание которых трудоемко, или не может быть получено из-за случайного характера воздействия внешней среды или помех. Для термосистемы информация о состоянии объекта представляет собой значение температуры с датчика, а объект управления – нагреватель системы. Размерности графиков приведены условно, так как точная модель регулятора зависит от конкретных особенностей термосистемы.

Пропорциональное управление рассчитывается как произведение постоянного коэффициента К p на текущую ошибку отклонения. Если включить в обратную связь нагревателя термосистемы только пропорциональное управление, требуемую температуру вообще невозможно достичь (Рис. 2). Это связано с инерционностью системы, так как управление нагревателем должно осуществляется с учетом динамики повышения температуры объекта.

Интегральное регулирование реализуется умножениясуммы ошибок температурдо текущего момента временина интегральный коэффициент K I . Для термосистем интегрирующее управление вполне может поддерживать заданную температуру(Рис. 3). Такое управление компенсирует запаздывание нагревание объекта и позволяет приблизиться к требуемому значению с большей или меньшей точностью. Для систем с меньшей инерционностью применения только интегрального управления неприменимо, так как запаздывание процесса накопления ошибки приведет к «вылетанию» регулируемого параметра и появлению колебаний.

С применением дифференциального управления система получает возможность компенсировать возможную будущую ошибку параметра. Расчет дифференциальной составляющей численно выглядит как разность между текущим и предыдущим значением параметра, умноженную на коэффициент регулирования K D . Так как используется измерения, выполненные в небольшом интервале времени, ошибки и внешнее воздействие сильно влияет на процесс регулирования. Дифференциальное управление в чистом виде трудно реализуется для большинства систем из-за указанных факторов.

В сумме, три компоненты ПИД регулятора обеспечивает получение эффективного результата в коротком промежутке времени (Рис. 4).

На практике лучшие результаты достигаются подбором констант для каждого компонента регулирования. Также находят применения саморегулирующие ПИД контроллеры, для которых коэффициенты рассчитываются программным путем внутри системы.

Особенности П, ПИ и ПИД регулирования

Наличие в приборах функции выходного устройства ПИД регулирования подразумевает возможность реализации трех типов регулирования: П-, ПИ- и ПИД регулирования.

П регулирование . Выходная мощность прямопропорциональна ошибке регулирования. Чем больше коэффициент пропорциональности, тем меньше выходная мощность при одной и той же ошибке регулирования. Пропорциональное регулирование можно рекомендовать для малоинерционных систем с большим коэффициентом передачи. Для настройки пропорционального регулятора следует сначала установить коэффициент пропорциональности максимальным, при этом выходная мощность регулятора уменьшится до нуля. После стабилизации измеренного значения, следует установить заданное значение и постепенно уменьшать коэффициент пропорциональности, при этом ошибка регулирования будет уменьшаться. Когда в системе возникнут периодические колебания, коэффициент пропорциональности следует увеличить так, чтобы ошибка регулирования была минимальной, а периодические колебания максимально уменьшились.

ПИ регулирование. Выходная мощность равна сумме пропорциона- льной и интегральной составляющих. Чем больше коэффициент пропор- циональности, тем меньше выходная мощность при одной и той же ошибке регулирования, чем больше постоянная времени интегрирования, тем медленее накапливается интегральная составляющая. ПИ регулирование обеспечивает нулевую ошибку регулирования и нечувствительно к помехам измерительного канала. Недостатком ПИ регулирования является медленная реакция на возмущающие воздействия. Для настройки ПИ регулятора следует сначала установить постоянную времени интегрирования равный нулю, а коэффициент пропорциональности - максимальным. Затем как при настройке пропорционального регулятора, уменьшением коэффициента пропорциональности нужно добиться появления в системе незатухающих колебаний. Близкое к оптимальному значение коэффициента пропорциональности будет в два раза больше того, при котором возникли колебания, а близкое к оптимальному значение постоянной времени интегрирования - на 20% меньше периода колебаний.

ПИД регулирование. Выходная мощность равна сумме трех состав- ляющих: пропорциональной, интегральной и дифференциальной. Чем больше коэффициент пропорциональности, тем меньше выходная мощность при одной и той же ошибке регулирования, чем больше постоянная времени интегрирования, тем медленее накапливается интегральная составляющая, чем больше постоянная времени дифференцирования, тем сильнее реакция системы на возмущающее воздействие. ПИД-регулятор применяется в инерционных системах с относительно малым уровнем помех измерительного канала. Достоинством ПИД регулятора является быстрый выход на режим, точное удержание заданной температуры и быстрая реакция на возмущающие воздействия. Ручная настройка ПИД является крайне сложной, поэтому рекомендуется использовать функцию автонастройки.

Автонастройка ПИД регулирования в приборах ЧАО “ТЭРА”:

Главное, что определяет качество ПИД регулятора - это его способность точно и быстро выходить на заданную температуру, для чего у всех современных ПИД регуляторов обязательно присутствует функция автонастройки. Стандартных алгоритмов автонастройки ПИД не существуют, на практике каждый производитель применяет свой собственный алгоритм. Поэтому, пользователь, приобретая один и тот же товар под названием “ПИД регулятор” у разных производителей, на своем объекте может получить совсем разные результаты их применения. Основными достоинствами алгоритма автонастройки в ПИД регуляторах ЧАО “ТЭРА” являются:

  • автонастройка и выход на регулирование без перерегулирования (у стандартных ПИД регуляторов перерегулирование может достигать 50-70% от заданной температуры, что на некоторых объектах регулирования технологически нежелательно или вообще запрещено)
  • продолжительность автонастройки в среднем в 2 раза короче, чем у других производителей (крайне важная характеристика для объектов регулирования с часто изменяемыми свойствами, особенно для инерционных объектов)

Автонастройку можно производить при любом стабильном состоянии объекта регулирования. Кроме того, чем больше разность между начальной и заданной температурой, тем точнее определяются коэффициенты ПИД регулятора. Все коэффициенты ПИД хранятся в энергонезависимой памяти прибора.

Автонастройку необходимо повторить, если:

  • изменилась мощность исполнительного устройства
  • изменились физические свойства объекта регулирования (масса, емкость, теплообмен и т.п.)
  • объект регулирования заменен другим неидентичным
  • при значительном изменении заданной температуры