Перевод чисел из одной системы счисления в другую составляет важную часть машинной арифметики. Рассмотрим основные правила перевода.

1. Для перевода двоичного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 2, и вычислить по правилам десятичной арифметики:

При переводе удобно пользоваться таблицей степеней двойки:

Таблица 4. Степени числа 2

n (степень)

Пример.

2. Для перевода восьмеричного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 8, и вычислить по правилам десятичной арифметики:

При переводе удобно пользоваться таблицей степеней восьмерки:

Таблица 5. Степени числа 8

n (степень)

Пример. Число перевести в десятичную систему счисления.

3. Для перевода шестнадцатеричного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 16, и вычислить по правилам десятичной арифметики:

При переводе удобно пользоваться таблицей степеней числа 16:

Таблица 6. Степени числа 16

n (степень)

Пример. Число перевести в десятичную систему счисления.

4. Для перевода десятичного числа в двоичную систему его необходимо последовательно делить на 2 до тех пор, пока не останется остаток, меньший или равный 1. Число в двоичной системе записывается как последовательность последнего результата деления и остатков от деления в обратном порядке.

Пример. Число перевести в двоичную систему счисления.

5. Для перевода десятичного числа в восьмеричную систему его необходимо последовательно делить на 8 до тех пор, пока не останется остаток, меньший или равный 7. Число в восьмеричной системе записывается как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.

Пример. Число перевести в восьмеричную систему счисления.

6. Для перевода десятичного числа в шестнадцатеричную систему его необходимо последовательно делить на 16 до тех пор, пока не останется остаток, меньший или равный 15. Число в шестнадцатеричной системе записывается как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.

Пример. Число перевести в шестнадцатеричную систему счисления.

Основные понятия систем счисления

Система счисления - это совокупность правил и приемов записи чисел с помощью набора цифровых знаков. Количество цифр, необходимых для записи числа в системе, называют основанием системы счисления. Основание системы записывается в справа числа в нижнем индексе: ; ; и т. д.

Различают два типа систем счисления:

позиционные, когда значение каждой цифры числа определяется ее позицией в записи числа;

непозиционные, когда значение цифры в числе не зависит от ее места в записи числа.

Примером непозиционной системы счисления является римская: числа IX, IV, XV и т.д. Примером позиционной системы счисления является десятичная система, используемая повседневно.

Любое целое число в позиционной системе можно записать в форме многочлена:

где S - основание системы счисления;

Цифры числа, записанного в данной системе счисления;

n - количество разрядов числа.

Пример. Число запишется в форме многочлена следующим образом:

Виды систем счисления

Римская система счисления является непозиционной системой. В ней для записи чисел используются буквы латинского алфавита. При этом буква I всегда означает единицу, буква - V пять, X - десять, L - пятьдесят, C - сто, D - пятьсот, M - тысячу и т.д. Например, число 264 записывается в виде CCLXIV. При записи чисел в римской системе счисления значением числа является алгебраическая сумма цифр, в него входящих. При этом цифры в записи числа следуют, как правило, в порядке убывания их значений, и не разрешается записывать рядом более трех одинаковых цифр. В том случае, когда за цифрой с большим значением следует цифра с меньшим, ее вклад в значение числа в целом является отрицательным. Типичные примеры, иллюстрирующие общие правила записи чисел в римской система счисления, приведены в таблице.

Таблица 2. Запись чисел в римской системе счисления

III

VII

VIII

XIII

XVIII

XIX

XXII

XXXIV

XXXIX

XCIX

200

438

649

999

1207

CDXXXVIII

DCXLIX

CMXCIX

MCCVII

2045

3555

3678

3900

3999

MMXLV

MMMDLV

MMMDCLXXVIII

MMMCM

MMMCMXCIX

Недостатком римской системы является отсутствие формальных правил записи чисел и, соответственно, арифметических действий с многозначными числами. По причине неудобства и большой сложности в настоящее время римская система счисления используется там, где это действительно удобно: в литературе (нумерация глав), в оформлении документов (серия паспорта, ценных бумаг и др.), в декоративных целях на циферблате часов и в ряде других случаев.

Десятичня система счисления – в настоящее время наиболее известная и используемая. Изобретение десятичной системы счисления относится к главным достижениям человеческой мысли. Без нее вряд ли могла существовать, а тем более возникнуть современная техника. Причина, по которой десятичная система счисления стала общепринятой, вовсе не математическая. Люди привыкли считать в десятичной системе счисления, потому что у них по 10 пальцев на руках.

Древнее изображение десятичных цифр (рис. 1) не случайно: каждая цифра обозначает число по количеству углов в ней. Например, 0 - углов нет, 1 - один угол, 2 - два угла и т.д. Написание десятичных цифр претерпело существенные изменения. Форма, которой мы пользуемся, установилась в XVI веке.

Десятичная система впервые появилась в Индии примерно в VI веке новой эры. Индийская нумерация использовала девять числовых символов и нуль для обозначения пустой позиции. В ранних индийских рукописях, дошедших до нас, числа записывались в обратном порядке - наиболее значимая цифра ставилась справа. Но вскоре стало правилом располагать такую цифру с левой стороны. Особое значение придавалось нулевому символу, который вводился для позиционной системы обозначений. Индийская нумерация, включая нуль, дошла и до нашего времени. В Европе индусские приёмы десятичной арифметики получили распространение в начале ХIII в. благодаря работам итальянского математика Леонардо Пизанского (Фибоначчи). Европейцы заимствовали индийскую систему счисления у арабов, назвав ее арабской. Это исторически неправильное название удерживается и поныне.

Десятичная система использует десять цифр – 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9, а также символы “+” и “–” для обозначения знака числа и запятую или точку для разделения целой и дробной частей числа.

В вычислительных машинах используется двоичная система счисления, её основание - число 2. Для записи чисел в этой системе используют только две цифры - 0 и 1. Вопреки распространенному заблуждению, двоичная система счисления была придумана не инженерами-конструкторами ЭВМ, а математиками и философами задолго до появления компьютеров, еще в ХVII - ХIХ веках. Первое опубликованное обсуждение двоичной системы счисления принадлежит испанскому священнику Хуану Карамюэлю Лобковицу (1670 г.). Всеобщее внимание к этой системе привлекла статья немецкого математика Готфрида Вильгельма Лейбница, опубликованная в 1703 г. В ней пояснялись двоичные операции сложения, вычитания, умножения и деления. Лейбниц не рекомендовал использовать эту систему для практических вычислений, но подчёркивал её важность для теоретических исследований. Со временем двоичная система счисления становится хорошо известной и получает развитие.

Выбор двоичной системы для применения в вычислительной технике объясняется тем, что электронные элементы - триггеры, из которых состоят микросхемы ЭВМ, могут находиться только в двух рабочих состояниях.

С помощью двоичной системы кодирования можно зафиксировать любые данные и знания. Это легко понять, если вспомнить принцип кодирования и передачи информации с помощью азбуки Морзе. Телеграфист, используя только два символа этой азбуки - точки и тире, может передать практически любой текст.

Двоичная система удобна для компьютера, но неудобна для человека: числа получаются длинными и их трудно записывать и запоминать. Конечно, можно перевести число в десятичную систему и записывать в таком виде, а потом, когда понадобится перевести обратно, но все эти переводы трудоёмки. Поэтому применяются системы счисления, родственные двоичной - восьмеричная и шестнадцатеричная. Для записи чисел в этих системах требуется соответственно 8 и 16 цифр. В 16-теричной первые 10 цифр общие, а дальше используют заглавные латинские буквы. Шестнадцатеричная цифра A соответствует десятеричному числу 10, шестнадцатеричная B – десятичному числу 11 и т. д. Использование этих систем объясняется тем, что переход к записи числа в любой из этих систем от его двоичной записи очень прост. Ниже приведена таблица соответствия чисел, записанных в разных системах.

Таблица 3. Соответствие чисел, записанных в различных системах счисления

Десятичная

Двоичная

Восьмеричная

Шестнадцатеричная

001

010

011

100

101

110

111

1000

1001

1010

1011

1100

1101

D http://viagrasstore.net/generic-viagra-soft/

1110

1111

10000

Правила перевода чисел из одной системы счисления в другую

Перевод чисел из одной системы счисления в другую составляет важную часть машинной арифметики. Рассмотрим основные правила перевода.

1. Для перевода двоичного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 2, и вычислить по правилам десятичной арифметики:

При переводе удобно пользоваться таблицей степеней двойки:

Таблица 4. Степени числа 2

n (степень)

1024

Пример. Число перевести в десятичную систему счисления.

2. Для перевода восьмеричного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 8, и вычислить по правилам десятичной арифметики:

При переводе удобно пользоваться таблицей степеней восьмерки:

Таблица 5. Степени числа 8

n (степень)

При решении задач с помощью вычислительной техники исходные данные, как правило, задаются в десятичной СС, в этой же СС представляются и результаты, сами же операции выполняются в двоичной СС. Т. к. данные кодируются в двоичной СС, то возникает необходимость перевода чисел из десятичной СС в двоичную и наоборот.

Правило перевода из двоичной СС в десятичную можно сформулировать следующим образом: все цифры числа и основание СС заменяются их десятичными эквивалентами; число представляется в виде суммы произведений степеней на значения соответствующих позиций; затем производится арифметический подсчет.

Правила перевода чисел из десятичную в двоичную различны для целой и дробной частей числа.

Для перевода целого числа (или целой части смешанного числа) используется алгоритм последовательного деления исходного числа на основание новой СС (т. е. на 2), действия производятся в старой СС (в десятичной). Деление прекращается, когда очередное частное от деления станет равно 0. Остатки от деления, выписанные в обратном порядке, образуют результат.

1

Таким образом,

Для перевода дробной части числа используется алгоритм последовательного умножения на основание новой СС (на 2), действия производятся в старой СС (в десятичной), целые части чисел, полученные в результате умножения дают запись результата.

Аналогично переводятся позиционные числа и с другими основаниями СС.

База заданий

1. Перевод чисел из одной СС в другую

Исходное число Новая система счисления Исходное число Новая система счисления
153 10 1456,55 10
153 10 1456,55 10
153 10 1456,55 10
153 10 1456,55 10
153 10 1456,55 10
101110 2 11001,11 2
101110 2 11001,11 2
101110 2 11001,11 2
101110 2 11001,11 2
101110 2 11001,11 2
1235 8 243,44 8
1235 8 243,44 8
1235 8 243,44 8
1235 8 243,44 8
1235 8 243,44 8
12121 3 142,11 5
12121 3 142,11 5
12121 3 142,11 5
12121 3 142,11 5
12121 3 142,11 5
1АС 16 5А,АА 12
1АС 16 5А,АА 12
1АС 16 5А,АА 12
1АС 16 5А,АА 12
1АС 16 5А,АА 12

Лабораторная работа

Подключение внешних устройств к компью­теру и их настройка

Цель: изучение основных компонентов персонального компьютера и основных видов периферийного оборудования, способов их подключения, основных характеристик (название, тип разъема, скорость передачи данных, дополнительные свойства). Определение по внешнему виду типов разъемов и подключаемого к ним оборудования.

Оборудование:

Тип разъема Характеристика Примечания
VGA Порт для подключения внешнего монитора
SPP (Standard Parallel Port) Осуществляет 8-разрядный вывод данных с синхронизацией по опросу или по прерываниям. Максимальная скорость вывода - около 80 кб/с. Может использоваться для ввода информации по линиям состояния, максимальная скорость ввода - примерно вдвое меньше.
USB USB обеспечивает возможность соединения периферийных устройств, таких как принтер, мышь или цифровая камера к ПК. Основные преимущества USB: сокращает число плат, устанавливаемых в компьютерные разъемы, и устраняет необходимость в переконфигурировании системы; обеспечивает реальную plug-and-play установку и возможность горячей замены. Таким образом, устройства могут быть добавлены, удалены или заменены в процессе роботы ПК. USB-порты являются стандартными для большинства настольных ПК. Максимальная скорость передачи данных по протоколу USB 1.1 составляет 1,5 мегабайта/с, по протоколу USB 2.0 - 12 мегабайт/с. Удобство состоит в том, что она практически исключает конфликты между различным оборудованием, позволяет подключать и отключать устройства в «горячем режиме» (не выключая компьютер) и позволяет объединять несколько компьютеров в простейшую локальную сеть без применения специального оборудования и программного обеспечения.
ECP (Enhanced Capability Port) Интеллектуальный вариант EPP. Введена возможность разделения передаваемой информации на команды и данные, поддержка DMA и сжатия передаваемых данных методом RLE (Run-Length Encoding - кодирование повторяющихся серий).
Line Out Аудиовыход, служит для подключения наушников или колонок
Line In Аудиовход, служит для записи звука с внешнего источника
Com Служит для передачи данных между ПК, телефонами, карманными компьютерами, а также для подключения периферии.

Типы периферийных устройств:

Устройства ввода знаковых данных:

  • Специальные клавиатуры.
  • Устройства командного управления.
  • Специальные манипуляторы.

Устройства ввода графических данных:

  • Планшетные сканеры
  • Ручные сканеры
  • Барабанные сканеры
  • Сканеры форм
  • Штрих-сканеры
  • Графические планшеты (дигитайзеры)
  • Цифровые фотокамеры

Устройства вывода данных:

  • Матричные принтеры
  • Лазерные принтеры
  • Светодиодные принтеры
  • Струйные принтеры

Устройства хранения данных:

  • Стримеры
  • Накопители на съемных магнитных дисках
  • Магнитооптические устройства
  • Флеш-диски

Устройства обмена данными:

  • Модем

Лабораторная работа

Использования внешних устройств, подклю­чаемых к компьютеру.

Цель: изучение основных видов периферийного оборудования, способов их подключения, основных характеристик (название, тип разъема, скорость передачи данных, дополнительные свойства). Определение по внешнему виду типов разъемов и подключаемого к ним оборудования.

Оборудование: макет системного блока, монитор, клавиатура, мышь, кабели в комплекте, периферийные устройства с различными типами разъемов (принтер, модем и др.).

Монитор - устройство визуального представления данных. Это не единственно возможное, но главное устройство вывода. Его основными потребительскими параметрами являются: размер, максимальная частота регенерации изображения, класс защиты.

Клавиатура - клавишное устройство управления персональным компьютером. Служит для ввода алфавитно-цифровых (знаковых) данных, а также команд управления. Комбинация монитора и клавиатуры обеспечивает простейший интерфейс пользователя. С помощью клавиатуры управляют компьютерной системой, а с помощью монитора получают от нее отклик.

Мышь - устройство управления манипуляторного типа. Представляет собой плоскую коробочку с двумя-тремя кнопками. Перемещение мыши по плоской поверхности синхронизировано с перемещением графического объекта (указателя мыши) на экране монитора. Мышь, в отличие от клавиатуры, не является стандартным органом управления, и персональный компьютер не имеет для нее выделенного порта. Для мыши нет и постоянного выделенного прерывания, а базовые средства ввода и вывода (BIOS) компьютера, размещенные в постоянном запоминающем устройстве (ПЗУ), не содержат программных средств для обработки прерываний мыши. Хотя мышь и не имеет выделенного порта на материнской плате, для работы с ней используют один из стандартных портов, средства для работы с которыми имеются в составе BIOS, о котором мы недавно упоминали (PS/2, СОМ)

Планшетные сканеры предназначены для ввода графической информации с прозрачного или непрозрачного листового материала. Принцип действия этих устройств состоит в том, что луч света, отраженный от поверхности материала (или прошедший сквозь прозрачный материал), фиксируется специальными элементами, называемыми приборами с зарядовой связью (ПЗС). Обычно элементы ПЗС конструктивно оформляют в виде линейки, располагаемой по ширине исходного материала. Перемещение линейки относительно листа бумаги выполняется механическим протягиванием линейки при неподвижной установке листа или протягиванием листа при неподвижной установке линейки.

Графические планшеты (дигитайзеры) - эти устройства предназначены для ввода художественной графической информации. Существует несколько различных принципов действия графических планшетов, но в основе всех их лежит фиксация перемещения специального пера относительно планшета. Такие устройства удобны для художников и иллюстраторов, поскольку позволяют им создавать экранные изображения привычными приемами» наработанными для традиционных инструментов (карандаш, перо, кисть).

Принтеры - это устройства вывода данных из ЭВМ, преобразовывающие информационные ASCII-коды в соответствующие им графические символы и фиксирующие эти символы на бумаге. Принтеры - наиболее развитая группа внешних устройств, насчитывается более 1000 модификаций.

Модем - устройство, предназначенное для обмена информацией между удаленными компьютерами по каналам связи, принято называть модемом (модулятор + демодулятор). При этом под каналом связи понимают физические линии (проводные, оптоволоконные, кабельные, радиочастотные), способ их использования (коммутируемые и выделенные) и способ передачи данных (цифровые или аналоговые сигналы). В зависимости от типа канала связи устройства приема-передачи подразделяют на радиомодемы, кабельные модемы и прочие. Наиболее широкое применение нашли модемы, ориентированные на подключение к коммутируемым телефонным каналам связи.


Лабораторная работа

Системы счисления, применяемые в цифровых ЭВМ

В ЭВМ используются следующие системы счисления:

1. Двоичная система счисления - в качестве рабочей ;

2. Десятичная система счисления - для записи исходной информации и выдачи результатов;

3. Восьмеричная система счисления;

4. Шестнадцатиричная система счисления;

5. Смешанная (двоично-десятичная) система счисления.

Восьмеричная и шестнадцатиричная системы счисления являются вспомогательными. Они применяются при подготовке задач к решению (программировании на языках ассемблере, машинном и др.). Данные системы удобны тем, что 8-ричная запись какого-либо числа в три раза короче его двоичной записи, а 16-ричная запись - в четыре раза. Что касается перевода чисел из одной системы в другую, а именно по схемам 8®2, 2®8, 16®2, 2®16, то он не вызывает каких-либо затруднений и может выполняться чисто механическим путем.

Двоично-десятичная система счисления также является вспомогательной и используется, в основном, для хранения десятичных чисел в памяти ЭВМ. Запись десятичных чисел в двоично-десятичной с.с. осуществляется следующим образом. Каждая цифра десятичного числа записывается ее двоичным эквивалентом. Для такой записи потребуется не более четырех двоичных разрядов. Четырехзначное двоичное число, изображающее десятичную цифру, называется тетрадой .

Для того чтобы некоторое десятичное число представить в двоично-десятичной форме, необходимо каждую его цифру записать соответствующей ей тетрадой. Возьмем, например, десятичное число 3795,28 и запишем его в двоично-десятичном виде:

0011 0111 1001 0101, 0010 1000

Т.о., десятичное число 3795,28 будет иметь такую двоично-десятичную запись: 0011011110010101,00101000.

Переход от десятичной к двоично-десятичной записи производится, как видим, элементарно и не требует каких-либо вычислений.

Для обратного перевода (от двоично-десятичной записи к десятичной) необходимо двоично-десятичное число влево и вправо от запятой разбить на четверки цифр (тетрады), а затем каждую из них записать отвечающей ей десятичной цифрой.

Пусть, например, дано двоично-десятичное число: 010110000110,00110111

Разобьем его на тетрады и заменим каждую тетраду десятичной цифрой:

0101 1000 0110, 0011 0111 = 586,37.

Общее правило для перевода целых чисел. Для перевода целого числа из одной позиционной системы счисления в другую, его надо последовательно разделить на основание q той системы, в которую оно переводится. Деление производится до тех пор, пока не получим частное, меньшее чем q. Число в новой системе счисления запишется в виде остатков деления, начиная с последнего. Последнее частное дает старшую цифру числа. Перевод производится в той системе счисления из которой переводим.

Люди не сразу научились считать. Первобытное общество ориентировалось на незначительное число предметов - один или два. Все, что было больше, по умолчанию наименовалось "много". Именно это считается началом современной системы исчисления.

Краткая историческая справка

В процессе развития цивилизации у людей стала появляться необходимость разделять небольшие совокупности предметов, объединенные общими признаками. Стали возникать соответствующие понятия: "три", "четыре" и так далее до "семи". Однако это был закрытый, ограниченный ряд, последнее понятие в котором продолжало нести смысловую нагрузку более раннего "много". Ярким примером этого является народный фольклор, дошедший до нас в первозданном виде (например, пословица "Семь раз отмерь - один раз отрежь").

Возникновение сложных способов счета

С течением времени жизнь и все процессы деятельности людей усложнялись. Это привело, в свою очередь, к возникновению более сложной системы исчисления. При этом люди использовали для наглядности выражения простейшие инструменты счета. Находили они их вокруг себя: они чертили палочки на стенах пещеры подручными средствами, делали зарубки, выкладывали интересующие их числа из палок и камней - вот лишь небольшой список существовавшего тогда многообразия. В дальнейшем современными учеными данному виду было присвоено уникальное название "унарная система исчисления". Ее суть состоит в записи числа с применением единственного вида знаков. Сегодня это наиболее удобная система, позволяющая визуально сопоставлять количество предметов и знаков. Наибольшее распространение она получила в начальных классах школ (счетные палочки). Наследством "камешкового счета" можно смело считать современные аппараты в их различных модификациях. Интересно и возникновение современного слова "калькуляция", корни которого идут от латинского calculus, что переводится не иначе как "камешек".

Счет на пальцах

В условиях крайне скудного словарного запаса первобытного человека жесты довольно часто служили важным дополнением к передаваемой информации. Преимущество пальцев было в их универсальности и в постоянном нахождении с объектом, который хотел передать информацию. Однако здесь есть и существенные недостатки: значительная ограниченность и кратковременность передачи. Поэтому весь счет людей, пользовавшихся "пальцевым способом", ограничивался цифрами, кратными количеству пальцев: 5 - соответствует количеству пальцев на одной руке; 10 - на обеих руках; 20 - общее количество на руках и ногах. Благодаря сравнительно медленному развитию числового запаса данная система просуществовала достаточно долгий временной промежуток.

Первые усовершенствования

С развитием системы исчисления и расширением возможностей и потребностей человечества максимальным используемым числом в культурах многих народов стало 40. Под ним также понималось неопределенное (не поддающееся счету) количество. На Руси широкое распространение получило выражение "сорок сороков". Его смысл сводился к количеству предметов, которое невозможно посчитать. Следующая ступень развития - это появление числа 100. Далее началось деление на десятки. Впоследствии стали появляться числа 1000, 10 000 и так далее, каждое из которых несло смысловую нагрузку, аналогичную семи и сорока. В современном мире границы конечного счета не определены. На сегодняшний день введено универсальное понятие "бесконечность".

Целые и дробные числа

Современные системы исчисления за наименьшее количество предметов принимают единицу. В большинстве случаев она является неделимой величиной. Однако при более точных измерениях она также подвергается дроблению. Именно с этим связано появившееся на определенном этапе развития понятие дробного числа. Например, вавилонская система денег (весов) составляла 60 мин, что равнялось 1 талану. В свою очередь 1 мина приравнивалась к 60 шекелям. Именно на основе этого вавилонская математика широко применяла шестидесятеричное дробление. Широко используемые в России дроби пришли к нам от древних греков и индийцев. При этом сами записи идентичны индийским. Незначительное отличие составляет отсутствие у последних дробной черты. Греки сверху прописывали числитель, а снизу знаменатель. Индийский вариант написания дробей получил широкое развитие в Азии и Европе благодаря двум ученым: Мухаммеду Хорезмскому и Леонардо Фибоначчи. Римская система исчисления приравнивала 12 единиц, называемых унциями, к целому (1 асс), соответственно, в основе всех вычислений лежали двенадцатиричные дроби. Вместе с общепринятыми довольно часто применялись и специальные деления. Так, например, астрономами до XVII века применялись так называемые шестидесятиричные дроби, которые были впоследствии вытеснены десятичными (ввел в обиход Симон Стевин - ученый-инженер). В результате дальнейшего прогресса человечества возникла необходимость в еще более значительном расширении числового ряда. Так появились отрицательные, иррациональные и Знакомый всем ноль появился относительно недавно. Он начал применяться при введении в современные системы исчисления отрицательных чисел.

Использование непозиционного алфавита

Что представляет собой такой алфавит? Для данной системы исчисления характерно, что значение цифр не меняется от их расстановки. Непозиционному алфавиту свойственно наличие неограниченного количества элементов. В основе систем, строящихся на базе данного вида алфавита, лежит принцип аддитивности. Другими словами, общее значение числа состоит из суммы всех цифр, которые включает запись. Возникновение непозиционных систем произошло раньше позиционных. В зависимости от способа счета общее значение числа определяется как разность или сумма всех цифр, входящих в состав числа.

Существуют недостатки таких систем. Среди основных следует выделять:

  • введение новых цифр при формировании большого числа;
  • невозможность отразить отрицательные и дробные числа;
  • сложность выполнения арифметических действий.

В истории человечества применялись различные системы исчисления. Наиболее известными считаются: греческая, римская, алфавитная, унарная, древнеегипетская, вавилонская.

Один из наиболее распространенных способов счета

Сохранившаяся до наших дней практически в неизменном виде, является одной из самых известных. При помощи нее обозначаются различные даты, юбилейные в том числе. Также она нашла широкое применение в литературе, науке и других областях жизни. В римской системе исчисления используются всего семь букв каждая из которых соответствует определенному числу: I = 1; V = 5; X = 10; L = 50; С = 100; D = 500; M = 1000.

Возникновение

Само происхождение римских цифр непонятно, история не сохранила точных данных их появления. При этом несомненным является факт: значительное влияние на римскую нумерацию оказала пятеричная система исчисления чисел. Однако в латинском языке отсутствуют упоминания о ней. На этом основании возникла гипотеза о заимствовании древними римлянами своей системы у другого народа (предположительно, у этрусков).

Особенности

Запись всех целых чисел (до 5000) производится при помощи повторения описанных выше цифр. Ключевой особенностью является расположение знаков:

  • сложение происходит при том условии, что большее стоит перед меньшим (XI = 11);
  • вычитание происходит, если меньшая цифра стоит перед большей (IX = 9);
  • один и тот же знак не может стоять подряд более трех раз (например, 90 записывается ХС вместо LXXXX).

Недостатком ее является неудобство выполнения арифметических действий. При этом она просуществовала довольно долго и перестала использоваться в Европе в качестве основной системы исчисления сравнительно недавно - в 16-м веке.

Римская система исчисления не считается абсолютно непозиционной. Связано это с тем, что в ряде случаев происходит вычитание меньшей цифры из большей (например, IX = 9).

Способ счета в Древнем Египте

Третье тысячелетие до нашей эры считается моментом возникновения системы исчисления в Древнем Египте. Суть ее состояла в записи специальными знаками цифр 1, 10, 102, 104, 105, 106, 107. Все остальные числа записывались в виде комбинации данных исходных знаков. При этом существовало ограничение - каждая цифра должна была повторяться не более девяти раз. В основе этого способа счета, который современные ученые называют "непозиционная десятичная система исчисления", лежит простой принцип. Смысл его состоит в том, что написанное число равнялось сумме всех цифр, из которых оно состояло.

Унарный способ счета

Система исчисления, в которой при записи чисел использован один знак - I - называется унарной. Каждое последующее число получается в результате прибавления новой I к предыдущему. При этом количество таких I равно значению записанного при помощи них числа.

Восьмеричная система исчисления

Это позиционный способ счета, в основании которого лежит число 8. Для отображения чисел используется цифровой ряд от 0 до 7. Широкое применение данная система получила в производстве и использовании цифровых устройств. Основным ее преимуществом является легкий перевод чисел. Их можно преобразовать в и обратно. Данные манипуляции осуществляются благодаря замене чисел. Из восьмиричной системы они переводятся в двоичные триплеты (например, 28 = 0102, 68 = 1102). Данный способ счета был распространен в области компьютерного производства и программирования.

Шестнадцатиричная система исчисления

В последнее время в компьютерной сфере данный способ счета используется достаточно активно. В корне данной системы лежит основание - 16. Система исчисления, базирующаяся на нем, предполагает использование цифр от 0 до 9 и ряда букв латинского алфавита (от А до F), которые применяются для обозначения интервала от 1010 до 1510. Данный способ счета, как уже было отмечено, используется при производстве программного обеспечения и документации, связанной с компьютерами и их составляющими. Основано это на свойствах современного компьютера, основной единицей которого является 8-битная память. Ее удобно преобразовывать и записывать при помощи двух шестнадцатиричных цифр. Основоположником такого процесса явилась система IBM/360. Документация для нее была впервые переведена этим способом. Стандарт Юникода предусматривает запись любого символа в шестнадцатиричном виде с использованием не менее 4 цифр.

Способы записи

Математическое оформление способа счета основывается на указании его в нижнем индексе в десятичной системе. Пример, число 1444 записывается в виде 144410. Языки программирования для записи шестнадцатиричных систем имеют разные синтаксисы:


Заключение

Как изучаются Информатика - основная дисциплина, в рамках которой осуществляется накопление данных, процесс их оформления в удобный для потребления вид. С применением особых инструментов происходит оформление и перевод всей доступной информации в язык программирования. Он в дальнейшем используется при создании программного обеспечения и компьютерной документации. Изучая различные системы исчисления, информатика предполагает использование, как уже сказано было выше, разных инструментов. Многие из них способствуют осуществлению быстрого перевода чисел. Одним из таких "инструментов" является таблица систем исчисления. Пользоваться ею достаточно удобно. При помощи данных таблиц можно, например, быстро перевести число из шестнадцатиричной системы в двоичную, не обладая при этом специальными научными знаниями. Сегодня возможность осуществлять цифровые преобразования есть практически у каждого заинтересованного в этом человека, поскольку необходимые инструменты предлагаются пользователям на открытых ресурсах. Кроме того, существуют и программы онлайн-перевода. Это существенно упрощает задачу по преобразованию чисел и сокращает время операций.