Согласно приведенному определению микропроцессорная система -- это собранная в единое целое совокупность взаимодействующих БИС микро-процессорного комплекта (иногда дополненная БИС из других комплектов)организованная в систему, т. е. вычислительная или управляющая система с микропроцессором в качестве узла обработки информации. Общая структурная схема. Типовая структура микропроцессорной системы изображена на рис. 3. Кратко охарактеризуем узлы-модули, входящие в ее состав, за исключением уже описанного микропроцессора.

Генератор тактовых импульсов -- источник последовательности прямоугольных импульсов, с помощью которых осуществляется управление событиями во времени. Он задает цикл команды -- интервал времени, необходимый для считывания выборки команды из памяти и ее исполнения. Цикл команды состоит из определенной последовательности элементарных действий, называемых состояниями (тактами). Для некоторых микропроцессоров не требуется внешний генератор тактовых импульсов: он содержится непосредственно в схеме однокристального микропроцессора.

Основная память системы (внешняя по отношению к микропроцессору) состоит из ПЗУ и ОЗУ.

Постоянное запоминающее устройство (ПЗУ) -- это устройство, в котором хранится программа (и при необходимости совокупность констант). Содержимое ПЗУ не может быть стерто. Оно используется как память программы, составленной заранее изготовителем в соответствии с требованиями ее пользователей. В таких случаях говорят, что программа жестко «зашита» в запоминающем устройстве. Чтобы осуществить иную программу, необходимо применить другое ПЗУ или его часть. Из ПЗУ можно только выбирать хранимые там слова, но нельзя вносить новые, стирать и заменять записанные слова другими. Оно подобно напечатанной таблице выигрышей по облигациям: можно лишь считывать имеющиеся там числа, но заменять их или вносить новые невозможно.

Помимо ПЗУ используются также ППЗУ и РППЗУ.

Программируемое постоянное запоминающее устройство (ППЗУ) отличается от ПЗУ тем, что пользователь может самостоятельно запрограммировать ПЗУ (ввести в него программу) с помощью специального устройства -- программатора, но только один раз (после введения программы содержимое памяти уже нельзя изменить).

Репрограммируемое постоянное запоминающее устройство (РППЗУ), называемое также стираемым ПЗУ, имеет такую особенность: хранимая информация может стираться несколько раз (при этом она разрушается). Иначе говоря, РППЗУ допускает перепрограммирование, осуществляемое с помощью программатора. Это облегчает исправление обнаруженных ошибок и позволяет изменять содержимое памяти.

Оперативное запоминающее устройство (ОЗУ), которое иначе называют запоминающим устройством с произвольной выборкой (ЗУПВ) или произвольным доступом (ЗУПД), служит памятью данных, подлежащих обработке, и результатов вычислений, а в некоторых микропроцессорных системах -- также программ, которые часто меняются. Его характерное свойство заключается в том, что время, требуемое для доступа к любой из ячеек памяти, не зависит от адреса этой ячейки. ОЗУ допускает как запись, так и считывание слов. По отношению к этому запоминающему устройству приемлема аналогия с классной доской, на которой мелом записаны числа: их можно многократно считывать, не разрушая, а при необходимости -- стереть число и записать на освободившемся месте новое. Следует иметь в виду, что информация, содержащаяся в ОЗУ, исчезает, стирается, если прерывается напряжение питания.

Интерфейсом называют устройство сопряжения. Это упрощенное определение. В более строгом толковании под интерфейсом понимают совокупность электрических, механических и программных средств, позволяющих соединять модули системы между собой и с периферийными устройствами. Его составными частями служат аппаратные средства для обмена данными между узлами и программные средства -- протокол, описывающий процедуру взаимодействия модулей при обмене данными. Интерфейс микропроцессорной системы относится к машинным интерфейсам. В микропроцессорной системе применяют специальные интерфейсные БИС для сопряжения периферийных устройств с системой (на рис. 2 они показаны в виде модулей интерфейса ввода и интерфейса вывода). Для этих БИС характерна универсальность, осуществляемая путем программного изменения выполняемых ими функций.

Более простые задачи решают порты ввода-вывода -- схемы, спроектированные (запрограммированные) для обмена данными с конкретными периферийными устройствами: приема данных с клавиатуры или устройства считывания, передачи их дисплею, телетайпу и т. п.

Порт -- это схема средней степени интеграции, содержащая адресуемый многорежимный буферный регистр ввода-вывода (МБР) с выходными тристабильными схемами (о них идет речь ниже при описании схемы ОЗУ), логикой управления и разъемом для подключения устройств ввода-вывода. Возможности перепрограммирования порта ограничены.

Когда периферийные устройства, входящие в состав микропроцессорной системы, сложны, выполняют многочисленные разнообразные операции, то для сопряжения применяют усложненный интерфейс, называемый периферийным программируемым адаптером. Он содержит набор встроенных портов и других регистров, облегчающих программирование и осуществление временного согласования. К одному периферийному программируемому адаптеру может быть подключено несколько простых устройств ввода-вывода. Подобный интерфейс считают универсальным интерфейсом широкого применения, поскольку его можно сочетать почти со всеми имеющимися периферийными устройствами.

Для многих микропроцессорных систем и микро-ЭВМ характерно несоответствие между относительно высокой скоростью обработки информации внутри микропроцессора и низкой скоростью обмена данными между модулями через интерфейс.

Устройство ввода осуществляет введение в систему данных, подлежащих обработке, и команд. Устройство вывода преобразует выходные данные (результат обработки информации) в форму, удобную для восприятия пользователем или хранения. Устройствами ввода-вывода служат блоки считывания информации с перфоленты и магнитной ленты (или записи на них), кассетные магнитофоны, гибкие диски, клавиатуры, дисплеи, аналого-цифровые и цифро-аналоговые преобразователи, графопостроители, телетайпы и т.п.

Далее предметом нашего внимания будут шины системы. Шиной называют группу линий передачи, используемых для выполнения определенной функции (по одной линии на каждый передаваемый бит). Особенность структуры микропроцессорной системы заключается в магистральной организации связей между входящими в ее состав модулями. Она осуществляется с помощью трех шин. По ним передаются вся информация и сигналы, необходимые для работы системы. Эти шины соединяют микропроцессор с внешней памятью (ОЗУ, ПЗУ) и интерфейсами ввода-вывода, в результате чего создается возможность обмена данными между микропроцессором и другими модулями системы, а также передачи управляющих сигналов.

Рассмотрим назначение и функции каждой из трех шин (на примере 8-разрядного микропроцессора), показанных на рис. 3.

Шина данных. Это двунаправленная шина: по ней данные могут направляться либо в микропроцессор, либо из него (на рис. 3 такая особенность шины данных подчеркнута стрелкой с двумя остриями, одно из которых обращено к микропроцессору, а другое -- от него). При этом необходимо еще раз подчеркнуть, что невозможна одновременная передача данных в обоих направлениях. Эти процедуры разнесены во времени в результате применения временного мультиплексирования.

Шина адреса (или адресная шина). По ней информация передается только в одном направлении -- от микропроцессора к модулям памяти или ввода-вывода.

Шина управления. Служит для передачи сигналов, обусловливающих взаимодействие, синхронизацию работы всех модулей системы и внутренних узлов микропроцессора. Одна часть линий шины управления служит для передачи сигналов, выходящих из микропроцессора (на рис. 3 это условно показано стрелкой, острие которой направлено вправо), а по другой части линий передаются сигналы к микропроцессору (на рис. 3 -- стрелка с острием, направленным влево).

Достоинством шинной структуры является возможность подключения к микропроцессорной системе новых модулей, например нескольких блоков ОЗУ и ПЗУ для получения требуемой емкости памяти.

1.1 Определение микропроцессора

В начале 70-х годов успехи технологии в микроэлектронике привели к созданию новой элементной базы электроники - микроэлектронных больших интегральных схем (БИС) {модуль 1 глава 1.6.3} . По степени интеграции (количеству активных элементов: диодов и транзисторов) интегральные схемы (ИС) условно подразделяются на ИС малой степени интеграции - до 100 активных элементов, средней степени интеграции (СИС) - до 1000 активных элементов, БИС - свыше 1000 активных элементов, СБИС - свыше 10000 элементов. Выпуск новой БИС при современном уровне автоматизации проектирования - очень сложный и дорогой процесс из-за больших первоначальных затрат на разработку ее логической структуры и топологии, изготовления фотошаблонов и технологической подготовки производства. Это 0,5-1 год работы большого коллектива. Поэтому изготовление БИС экономически оправдано при их выпуске, исчисляемом десятками-сотнями тысяч штук в год. Выпускать специализированные БИС для каждого конкретного применения практически не реально. В результате поиска областей массового применения микросхем с высоким уровнем интеграции их разработчиками была предложена идея создания одной универсальной БИС или некоторого набора БИС, специализация которых для каждого конкретного случая применения достигается не схемно, а программно. Так появились стандартные универсальные элементы - микропроцессорные БИС со структурой, аналогичной структуре ЭВМ.

Микропроцессор (МП) - это обрабатывающее и управляющее устройство, способное под программным управлением выполнять обработку информации, принятие решений, ввод и вывод информации и выполненное в виде одной или нескольких БИС.


1.2 Технология изготовления МП БИС

Существуют два вида технологии изготовления БИС: биполярная - основанная на применении биполярных транзисторов и МОП (металл - окисел - полупроводник) - технология, основанная на использовании полевых транзисторов.

БИС, изготавливаемые по биполярной технологии, различаются по схематическим способам реализации. В основном применяется транзисторно-транзисторная логика с диодами Шоттки (ТТЛШ) и эмиттерно-связанная логика (ЭСЛ). В логике ТТЛШ используются биполярные n-p-n транзисторы, дополненные диодами Шоттки (ДШ). ДШ представляет собой выпрямительный контакт на границе металл-полупровод­ник Al-nSi. В металле и кремнии основные носители одного и того же типа - электроны, а неосновных носи­телей нет. ДШ открываются при U=0,1-0,3 В и имеют крутую вольт-амперную характеристику. Они под­ключаются параллельно коллекторному переходу n-p-n транзистора и образуют транзистор Шоттки, изготав­ливаемый в едином технологическом процессе. Применение ДШ значительно повышает быстродействие транзистора, так как устраняется насыщение коллекторного перехода и нет рассасывания зарядов в нем.

Первое поколение

4004 – 1971 г.

История МП началась в 1971 году, когда фирма INTEL (ее название произошло от слов Integrated Elecronics) выпустила первый МП i4004, изготовленный по p-МОП техно­логии с разрешением 10 мкм. Он имел разрядность данных 4 бита, способность адресовать 640 байт памяти, тактовую частоту f=108 кГц и выполнял 60 тыс.оп./сек. Такой процессор уже мог работать в качестве вычислительного ядра калькулятора. Он содержал 2300 транзисторов.

8008 – 1972 г.

В 1972 г. появился первый усовершенствованный восьмиразрядный МП i8008, изготов­ленный также по р-МОП технологии. Он был размещен в корпусе c 16-ю выводами. Выполнял 48 команд, адресовал 16 Кб памяти, f=800 КГц. Имел 7 внутренних 8-разрядных регистра и 7-уровневый внутренний стек.

Второе поколение

8080 – 1974 г.

В 1974 г. появился МП i8080, изготовленный по n-МОП технологии с разрешением 6 мкм, что позволило разместить в кристалле 6000 транзисторов. Процессор требовал трех источников питания (+5,+12,-5 В) и сложной двухтактной синхронизации с частотой 2 МГц. Его полный аналог российского производства КР580ВМ80 подробно рассмотрен выше. В это же время фирмой Motorola был выпущен МП М6800, отличающийся от i8080 тем, что имел одно напряжение питания, более мощную систему прерываний, содержал два аккумулятора, но не имел РОН. Данные для обработки извлекались из внешней памяти и потом возвращались туда же. Команды работы с памятью короче и проще чем в ВМ80, но пересылка занимает больше времени. Преимуществ во внутренней структуре М6800 не выявилось и до настоящего времени. Остались два конкурирующих семейства Intel и Motorola. Однако большую часть как мирового, так и российского рынка занимает продукция фирмы Intel.

Следующим стал процессор i8085 (f=5МГц, 6500 транзисторов, 370 тыс.оп./с., 3-мкм технология). Он сохранил популярную регистровую архитектуру i8080 и программную совместимость, но в него добавили порт последовательного интерфейса, тактовый генератор и системный контроллер. Напряжение питания одно: +5В.

Z80 – 1977 г.

Часть разработчиков фирмы Intel, не согласных с рядом решений руководства, перешли в фирму Zilog и в 1977 г. создали МП Z80 (российский аналог К1810ВМ80). Этот МП был использован в английском компьютере "Спектрум" фирмы Sincler ,который считался лучшим представителем 8-разрядных МП 2-го поколения.

Третье поколение

8086 – 1978 г.

Это поколение МП фирмы Intel заложило основу современных персональных компьютеров. В 1978 г. был выпущен 16-разрядный процессор i8086. Его данные: f=5 МГц, производительность 330 тыс.оп./с., технология 3мкм, 29 тыс. транзисторов. В нем начала использоваться сегментация памяти и новая схема кодирования команд.

8088 – 1979 г.

Однако слишком сложная и дорогая технология производства этого процессора вынудила фирму Intel c 1979 г. некоторое время выпускать несколько упрощенный вариант под названием i8088, шина данных которого была только 8 бит. Именно этот процессор фирма IBM выбрала для своего первого персонального компьютера модели IBM PC/XT.

80186 – 1980 г.

В 1980 г. создан МП i80186. В нем, по сравнению с i8086, дополнительно включены два независимых скоростных канала ПДП, программируемый контроллер прерываний, генерируются сигналы выбора 7 периферийных устройств. Имеется 16 внутренних программируемых таймеров, два из них имеют выход наружу, остальные могут создавать временные задержки. Очередь команд - 6 байтов (в i8088 - 4 байта). Имеется 10 дополнительных команд, ускоряющих выполнение программ по сравнению с i8086. Однако широкого применения в компьютерах данный процессор не получил.

Четвертое поколение

80286 – 1982 г.

В 1982 г. появился процессор i80286, который был использован фирмой IBM в компьютере PC/AT (AT - Advanced Technology - перспективная технология). Он уже имел 134 тыс. транзисторов (технология 1,5 мкм) и адресовал до 16 Мб физической памяти. Он мог работать в двух режимах: реальном и защищенном. В реальном режиме i80286 работает как i8086 с повышенным быстродействием (f до 20 МГц). Память рассматривается как некоторое число сегментов, каждый из которых содержит 2 16 байт. Сегменты начинаются с адресов, кратных 16 (младшие 4 адресных бита всегда равны 0). Сегменты могут задаваться в программах произвольно. Адреса сегментов хранятся в сегментных регистрах. В защищенном режиме старший адрес сегмента не вычисляется путем добавления 4-х младших нулей, а извлекается из таблиц, индексируемых с помощью сегментных регистров. Это позволяет работать с большими массивами информации, объем которых превышает объем физической памяти. Если физическая память полностью загружена, то непоместившиеся данные располагаются на винчестере. Кроме того, в защищенном режиме возможна поддержка мультизадачного режима. Для этой цели была создана операционная система OS/2.

В таком режиме процессор может выполнять различные программы в выделенные кванты времени, отведенные для каждой из программ. Пользователю же кажется, что программы выполняются одновременно.

Пятое поколение

80386 – 1985 г.

Первым его представителем был 32-х разрядный МП i80386DX, содержащий 275 тыс. транзисторов, технология 1,5 мкм, адресуемая физическая память 4 Гб. Появились новые регистры, новые 32-битные операции.

Для того, чтобы МП мог выполнять программы, написанные для предыдущих поколений он имеет три режима работы.

После сброса или подачи напряжения питания МП переходит в реальный режим и работает как очень быстрый i8086, но, по желанию программиста, с 32-мя разрядами. Все действия: адресация, обращение к памяти, обработка прерываний выполняется как в i8086. Второй режим - защищенный, включается загрузкой в регистр управления определенного слова состояния. В этом случае МП работает как i80286 в защищенном режиме. Реализуется многозадачность, защита памяти с помощью четырехуровневого механизма привилегий и ее страничной организации. МП работает как несколько виртуальных процессоров с общей памятью, каждый из которых может быть в режимах i8086, i80286 или i80386.

В третьем, виртуальном режиме полностью раскрываются преимущества этого процессора. Здесь полностью используются все 32 разряда адреса и возможна работа с виртуальной памятью. Только с появлением i80386 началось бурное внедрение ОС Windows, так как мощность процессоров предыдущих поколений была для Windows недостаточной.

80386 SX – 1988 г.

В 1988 г. появился процессор i80386SX, который заполнил промежуток между уже устаревшим процессором i80286 и очень дорогим процессором i80386DX. Замена на материнской плате устаревшего процессора i80286 на i80386DX невозможна из-за большей ширины шины данных последнего. Процессор i80386SX такую замену позволяет. Внутренние процессы в i80386SX происходят также как в i80386DX, но связь с "внешней средой" осуществляется только через 16-разрядную шину. В результате, общение происходит в 2 шага по 16 бит, что замедляет работу примерно на 10%. Другое ограничение процессора i80386SX - 24-разрядная адресная шина,что ограничивает размер оперативной памяти до 16Мб. Вслед за рассмотренным МП i80386SX фирма Intel создала и поставила на рынок процессор i80386SL с тактовой частотой 33 МГц, построенный на КМОП структурах, которые обеспечивают минимальный расход электроэнергии. Благодаря этому стали развиваться персональные компьютеры типа Notebook, работающие от батареи.

Шестое поколение

80486 – 1989 г.

Оно появилось в 1989 г. как МП i80486DX. В отличие от МП предыдущих поколений этот МП не представляет что-то принципиально новое.В нем в одном кристалле были скопированы процессор i80386, сопроцессор i80387 и первичный кэш емкостью 8 Кбайт.

Примечание.

Несмотря на доставшуюся от МП i80386 32-разрядную архитектуру, в результате совмещения процессора, сопроцессора и кэша на одном кристалле и других усовершенствований,i80486 при той же тактовой частоте производит вычисления в 3-4 раза быстрее, чем его предшественник.

Фирма Intel все время совершенствовала этот процессор, и были выпущены МП i80486DX2, в котором внешняя тактовая частота удваивается собственным кварцем микросхемы, и i80486DX4, в котором частота умножается на 3. В этих процессорах все команды, для которых не нужна передача данных на внешнюю шину, выполняются в 2 -3 раза быстрее. Только время, затрачиваемое на доступ к оперативной памяти и более медленная периферия снижают скорость работы. Кроме того, в i80486DX4 кэш память увеличена до 16 Кбайт.

Поколения Pentium

Pentium P5 – 1993 г.

В 1993 г. появился i80586, которому было дано имя Pentium (P5). Это был 32 разрядный процессор с внешней тактовой частотой 66 МГц, построенный по субмикронной технологии с КМОП структурой (0,8 мкм), содержащей 3,1 млн. транзисторов. Pentium имеет два 32-битных адресных пространства (логическое и физическое), 64 - разрядную шину данных, 2 конвейерные линии обработки команд, работающие параллельно. Одновременно выполняются два набора команд. Кэш память объемом 16 Кбайт разделена: 8 Кбайт - кэш команд и 8 Кбайт - кэш данных. Содержится новый блок вычислений с плавающей точкой, в котором операции выполняются в 4-8 раз быстрее, чем в i80486.

Р54, Pentium Pro – 1994 г.

В 1994 г. появились процессоры Pentium второго поколения (P54). При почти том же числе транзисторов они выполнялись по технологии 0,6 мкм, что позволило снизить потребляемую мощность. Напряжение питания снижено до 3,3 В. Применено внутреннее умножение частоты. При этом интерфейсные схемы вешней системной шины работают на частотах 50,60,66 МГц, а ядро процессора работает на более высокой частоте (75,90,100,120,133, 150, 166 и 200 МГц). Разделение частот позволяет реализовать достижения технологии изготовления МП, существенно опережающие возможности повышения производительности памяти. Коэффициент умножения (1,5;2;2,5;3)задается комбинацией уровней сигналов на двух управляющих входах. Процессоры с различными значениями f, указанными в маркировке на корпусе, изготавливают по одним и тем же шаблонам. Маркировка частоты наносится после жестких выбраковочных испытаний. В зависимости от астоты, на которой МП полностью прошел выходной контроль.

Параллельно с Pentium развивался и процессор Pentium Pro. Его главное отличие принципа организации вычисления - динамическое исполнение. При этом внутри процессора инструкции могут исполняться не в том порядке, который предполагает программа. Это повышает производительность без увеличения частоты f. Кроме того, применена архитектура двойной независимой шины, повышающая суммарную пропускную способность. Одна шина - системная, служит для общения ядра с основной памятью и интерфейсными устройствами. Другая предназначена исключительно для обмена со вторичным кэшем объемом 256 Кбайт (512 Кбайт), интегрированным в корпусе МП. Для уменьшения нагрева кристалла предусмотрена возможность мгновенного снижения потребляемой мощности приблизительно в 10 раз путем прекращения тактирования большинства узлов процессора. В это состояние МП переходит по сигналу от внутреннего датчика температуры, а также при выполнении команды HALT.

Pentium MMX – 1997 г.

В 1997 г. выпущен процессор Pentium ММХ (Р55С). Технология ММХ представляет собой наиболее существенное улучшение архитектуры процессоров Intel с момента появления i80386. Кристалл Pentium ММХ имеет площадь на 50 % больше чем классический Pentium. Буферные схемы выходных цепей микросхемы работают при напряжении 3,3 В, внутренняя схема - 2,8 В для настольных и 2,45 В для портативных моделей компьютера.

Технология ММХ ориентирована на решение задач мультимедиа, требующих интенсивных вычислений над целыми числами. Подобные задачи решают игровые, коммуникационные, обучающие и другие программы, которые используют графику, звук, трехмерное изображение, мультипликацию и т.п.

Сущность технологии ММХ состоит в появлении в процессоре 8 новых виртуальных 64-разрядных регистров и 57 новых команд для решения задач мультимедиа. Восемь новых регистров являются виртуальными потому, что физически эти регистры являются регистрами сопроцессора. Таким образом сохраняется совместимость с предыдущими поколениями программ.

Pentium II – 1997 г.

В мае 1997 г. на рынке появился Pentium II, изготовленный по 0,3 мкм технологии. Он представляет собой слегка урезанный вариант ядра Pentium Pro с более высокой внутренней тактовой частотой, в которое ввели поддержку ММХ. В этом процессоре применена новая технология - кристалл с ядром процессора и набор кристаллов статической памяти и дополнительных схем, реализующих вторичный кэш, размещены на небольшой печатной плате - картридже. Все кристаллы закрыты общей крышкой и охлаждаются специальным вентилятором.

Внутренняя тактовая частота 233,266,300 МГц, внешняя осталась 66,6 МГц.

Процессор имеет дополнительные режимы пониженного энергопотребления:
1. Sleep ("Спящий режим"), когда он не тактирует свои внутренние узлы, кроме схемы умножителя частоты.
2. Deep sleep ("Глубокий сон"). Возникает при снятии внешних тактовых импульсов. В этом режиме процессор не выполняет никаких функций и потребляемый ток определяется только токами утечки.

Pentium III – 1999 г.

В 1999 г. появился процессор Pentium III с тактовой частотой 600 МГц, содержащий 9,5 млн. транзисторов. По заявлению компании Intel этот процессор позволит получать из Интернет аудио- и видеоинформацию, а также трехмерную графику высочайшего качества. По прогнозам компаний-производителей дальнейшее развитие технологии производства МП будет идти в направлении увеличения плотности транзисторов на кристалле, роста числа слоев металлизации и повышении тактовой частоты, наряду с уменьшением напряжения питания и удельной(на один транзистор) потребляемой электрической и выделяемой тепловой энергии. В настоящее время выпускается процессор Pentium IV тактовая частота которого достигла 3000 МГц.

Технологический предел линейных размеров транзисторов на кристалле, обусловленный физическими ограничениями, составляет около 0,05 мкм. На пути дальнейшей минимизации кроме физических ограничений имеются и экономические. Для каждого следующего поколения микросхем стоимость технологии удваивается. В 1986 г. i80386 выпускался на заводе стоимостью 200 млн. долларов. В настоящее время завод компании Intel стоит 2,4 млрд. долларов. Следовательно, завод, производящий микросхемы по технологии 0,25 мкм будет стоить 10 млрд.долларов. Возрастают сроки изготовления МП. Так процессор Pentium производится за 6 месяцев, а более новый Pentium Pro - за 9 месяцев. Смена поколений МП происходит каждые 2-3 года. С каждым поколением линейные размеры элементов уменьшаются примерно в 1,5 раза. В 2000 г. ширина проводников составляла 0,2 мкм, а в 2006 г. достигла 0,1 мкм, тактовая частота уже превысила 2000 МГц.

Вышеприведенные краткие данные о развитии МП на примере продукции фирмы Intel показывают, как стремительно развивается и совершенствуется производство МП. Ни одна отрасль техники не развивается столь быстро. Об этом очень образно выразился основатель фирмы Intel Гордон Мур: "Если бы автомобилестроение развивалось со скоростью полупроводниковой промышленности, то сегодня "Роллс-Ройс" стоил бы 3 доллара, мог бы проехать полмиллиона миль на одном галлоне бензина и было бы дешевле его выбросить, чем платить за парковку".

В приведенном обзоре рассмотрены процессоры только фирмы Intel. Необходимо отметить, что аналогичный путь развития проходит и технология других фирм, выпускающих процессоры, таких как AMD, Cyrix, Motorola и других. Но ведущим "законодателем мод" в этой борьбе за качество остается Intel.


9 Микропроцессоры и микроЭВМ в информационно-измерительной аппаратуре

9.1 Основные функции МП в измерительной аппаратуре

Наиболее часто используются встроенные МП и МК. Они существенно улучшают характеристики приборов (точность, надежность, экономичность и др.). Применение встроенного МП позволяет однофункциональный прибор превратить в многофункциональный путем объединения нескольких функциональных узлов совместно с коммутирующими устройствами в одном блоке. МП делает такой прибор программно управляемым.

МП повышает точность измерительного прибора за счет автоматической компенсации установки нуля перед началом измерений, автоматического выполнения градуировки (самокалибровки, выполнения самоконтроля), проведения автоматической статистической обработки результатов измерения.

МП расширяет измерительные возможности приборов за счет использования косвенных и совокупных измерений. При косвенных измерениях измеряется не искомый параметр, а другие параметры, с которыми искомый связан функциональной зависимостью. Например, мощность может быть определена путем измерения напряжения и сопротивления и рассчитана по формуле P=U 2 /R. При использовании метода совокупных измерений одновременно измеряется несколько одноименных физических величин, при которых искомые значения величин находятся путем решения системы уравнений. МП при этом программируется на реализацию необходимых аналитических зависимостей.


9.2 Примеры использования МП в измерительной аппаратуре

9.2.1 Микропроцессорный цифровой частотомер

Для измерения высоких частот используется прямой метод, в котором выбирается определенный интервал времени и подсчитывается число периодов исследуемого сигнала. Точность измерения повышается с увеличением числа периодов N. На низких частотах это потребовало бы слишком большой интервал времени. Поэтому на низких частотах используется косвенный метод. Ширина временных ворот выбирается кратной периоду исследуемого сигнала qT x , ворота заполняются импульсами генератора известной частоты F сч, и подсчитывается число импульсов n. Оба метода иллюстрирует рис.9-1


Рис.9-1 Временные диаграммы процесса измерения частоты.

Здесь:
а - измеряемый сигнал;
б - сигнал, преобразованный в последовательность импульсов;
в - временной интервал при косвенном измерении;
г - импульсы заполнения при косвенном измерении;
д - временной интервал при прямом измерении;
е - пачка импульсов при прямом измерении.

На рис.9-2 приведена структурная схема прибора для измерения частоты сигнала прямым и косвенным методом под управлением МП, в которой отмечены точки, соответствующие временным диаграммам.


Рис.9-2

Прямой метод

При А 0 =1 реализуется прямой метод измерения. Мультиплексоры выбирают входы х 1 . МП создает временные ворота длительностью Т. Если счетчик в этом интервале насчитал N импульсов, то Т=nT x ,или T=n/F x ,отсюда F x =n/T.

Косвенный метод

При А 0 =0 выбираются х 0 входы мультиплексоров, и реализуется косвенный метод измерения. Формирователь временных ворот содержит делитель частоты с коэффициентом пересчета q=2 к, где k выбирается так, чтобы получить число имульсов (график г), обеспечивающее требуемую точность измерения F x . В интервале qT x уложилось n импульсов qT x =nT сч или q/F x =n/F сч, поэтому F x =qF сч /n.


9.2.2 Широкодиапазонный частотомер

В нем используется гетеродинный метод понижения частоты измеряемого сигнала. Если смешать измеряемый сигнал F изм с сигналом гетеродина (вспомогательного генератора) F 1 , то в результате образуются сигналы с частотами F изм +nF 1 и F изм -nF 1 . Для понижения частоты используется вариант F изм -nF 1 =F пр, где F пр - промежуточная частота, выделяемая следующим блоком.


Рис.9-3

ПСЧ - программируемый синтезатор частоты (гетеродин).
УПЧ - усилитель промежуточной частоты.
ЦЧ - цифровой частотомер типа рис.9-2

При работе МП изменяет F синт до значения F" синт, при котором

F изм -F" синт =F пр. Тогда F изм =F пр +nF" синт.


9.2.3 Измерительный генератор с МП управлением

Наиболее часто используются функциональные генераторы, вырабатывающие сигналы различной формы (треугольные, прямоугольные, синусоидальные и другие) с нормируемыми метрологическими характеристиками. Частотный дипазон таких генераторов 10 -6 Гц - 50*10 6 Гц. На рис.9-4 показана структурная схема такого генератора.


Рис.9-4

Здесь БС - программируемый блок счетчиков, ГТИ - программируемый генератор тактовых импульсов.

После ввода оператором функции f(t) для генерирования сигнала той же формы, МП вычисляет отсчеты f(t i) на интервале одного периода с заданной частотой выборки. Отсчеты записываются в ОЗУ. Выходной сигнал ГТИ поступает на БС, где формируется адрес ОЗУ.


9.2.4 Цифровые фильтры

Цифровой фильтр - устройство, осуществляющее пробразование одного дискретного сигнала x n в другой дискретный сигнал y n , причем сами сигналы x n и y n представляют собой двоичные цифровые коды.

Аналоговый фильтр представляет собой частотно избирательную цепь, осуществляющую некоторое линейное преобразование над непрерывным входным сигналом U 1 (t) в непрерывный выходной сигнал U 2 (t). В отличие от него, цифровой фильтр выполняет преобразование входной цифровой последовательности x(nT) в выходную цифровую последовательность y(nT). Рассмотрим преобразование аналогового фильтра в цифровой на примерах простейших фильтров.

Простейший аналоговый фильтр ВЧ представляет собой RC-цепь (рис 9-5).


Рис.9-5

Определим соотношение между входным и выходным напряжением.

U 2 (t)=i(t)*R=RC*d(U 1 -U 2)/dt (1)

Представим U 1 (t) и U 2 (t) соответствующими цифровыми последовательностями U 1 =x(nT) и U 2 =y(nT), тогда:

Подставив (2) в (1), получим:

Обозначим

.

Полученное выражение определяет алгоритм расчета выходного сигнала фильтра Y n на n-ом шаге квантования в зависимости от его значения на предыдущем n-1 -ом шаге, значений входного сигнала X n , X n -1 и шага дискретизации τ. Определим переходную характеристику фильтра ВЧ.

Если выбрать шаг дискретизации τ=1, то получим

X(nT)=1 при n>=0,X(nT)=0 при n<0.

При более мелком шаге τ=0,125 имеем

При использовании аналогового фильтра решение его дифференциального уравнения дает

На рис.90-6 приведены значения выходного сигнала, рассчитанного по формулам (3), (4) и (5) и соответствующие графики.


Рис.9-6

Можно заметить,что с уменьшением интервала дискретизации τ переходная характеристика цифрового фильтра приближается к переходной характеристике аналогового фильтра.

Простейший аналоговый фильтр НЧ, изображен на рис 9-7.


Рис 9-7

Он описывается уравнением:

Перейдем к приращениям:

и, окончательно:

Можно показать, что и в этом случае при уменьшении τ, переходная характеристика цифрового фильтра неограниченно приближается к переходной характеристике аналогового фильтра.

В цифровых фильтрах все сводится к операциям умножения на некоторые коэффициенты и сложения. Вышерассмотренные фильтры являются фильтрами первого порядка. Лучшие результаты дают фильтры более высоких порядков, в которых для вычисления выходной величины Y n используются значения х и у, задержанные на несколько шагов.

Вычисление такого выражения очень просто программируется и выполняется на МП. Задержанные сигналы размещаются в стеке.


10 Тестирование микропроцессорных систем

10.1 Тестирование статическими сигналами

В микропроцессорных системах потоки данных апериодичны, длительности сигналов изменяются, что вызывает большие затруднения при тестировании и диагностике - определении причины появления ошибок. Один из способов преодолеть эти затруднения - тестировать систему в статике. Для МП К580ВМ80 это выполняется следующим образом. МП не впаивается в плату, а устанавливается в панель. При тестировании МП извлекается, и вставляется переходная колодка имитации и индикации сигналов. К выводам адресной шины подключаются тумблеры, к шине данных - тумблеры через схемы с тремя состояниями и светодиоды через логические элементы с открытым коллектором. Набирая тумблерами необходимые адреса и выходные сигналы МП, можно протестировать систему.


10.2 Автодиагностика микропроцессорных систем

Автодиагностика - это встроенная диагностика, основанная на использовании внутренних диагностических программ. Эти программы могут быть самозапускаемыми или вызываемыми пользователем системы. Они закладываются при проектировании микропроцессорной системы.


10.3 Логические анализаторы

Тестирование статическими сигналами - это медленный и не всегда применимый процесс. Более универсальным является применение специальных приборов - логических анализаторов.


10.3.1 Анализаторы логических состояний (синхронный режим)

Они выпускаются 8-, 12-, 16- и 32-х разрядными. Выходная информация выдается в виде таблиц единиц и нулей, восьмеричных или шестнадцатиричных кодов. Анализатор подключается к тестируемой шине, и на табло или дисплей выдается таблица n состояний шины, начиная с заданного состояния, или n предшествующих состояний. Строятся подобные анализаторы по структурной схеме рис.10-1.


Рис.10-1

К0-К15 - компараторы входных сигналов;
R - потенциометр для установки уровня компарирования;
KC - компаратор слов;
Кл - клавиатура ввода слова;
ФУС - формирователь управляющего сигнала;
Рг0-Рг15 - сдвиговые регистры {модуль 2 глава 7.2} для записи 16-ти значений i-го входа;
f:n - делитель частоты; БПр - блок преобразования.

В начале работы логического анализатора на клавиатуре набирается слово, начиная с которого производится анализ. При совпадении кода на выходах К0-К15 и набранного кода КС выдает импульс, под воздействием которого ФУС формирует управляющие сигналы УС1 и УС2. При поступлении каждого тактового импульса ТИ на выходе счетчика - делителя появляется счетный импульс УС1*ТИ. После поступления n тактовых импульсов конъюнктор &2 закрывается, и запись в регистры прекращается. Блок преобразования из n выходных значений регистров Рг0-Рг15 формирует на экране дисплея таблицу, содержащую n строк.


10.3.2 Анализаторы логических временных диаграмм (асинхронный режим)

Такие анализаторы сканируют входные сигналы с частотой, значительно превосходящей частоту сигналов. Это позволяет не только определять наличие или отсутствие сигнала в каждом тактовом периоде, но и исследовать динамику изменения, обнаруживать искажения фронта, кратковременные пики, провалы и т.д. Анализаторы асинхронного режима тактируются значительно большей внутренней частотой. Выпускаются приборы с f=20, 50, 100, 200 МГц. В них применяются дополнительные триггерные схемы фиксации ложных импульсов до 5 нс, что позволяет значительно легче обнаруживать такие импульсы.


10.4 Внутрисхемные эмуляторы

Эмуляция - процесс, в котором одна система используется для воспроизведения свойств другой системы. Для организации эмуляции различных компонентов разрабатываемого микропроцессорного устройства используются внутрисхемные эмуляторы. Они предназначены для организации комплексной отладки разработки. Промышленность выпускает эмуляторы в виде автономных приборов. Они эмулирют поведение микропроцессора, запоминающих устройств, периферийных устройств.

Внутрисхемный эмулятор может работать в режимах опроса состояния различных узлов МПС, пошагового исполнения программы пользователя. С его помощью проверяются ядро МПС, магистрали, выполняются тесты ПЗУ и ОЗУ. Наилучший вариант тестирования - объединение методов внутрисхемной эмуляции и сигнатурного анализа.


10.5 Сигнатурный анализ

Сигнатура - это число состоящее из 4-х знаков шестнадцатиричного кода и условно, но однозначно характеризующее определенный узел контролируемого устройства. Сигнатура определяется на заводе - изготовителе прибора и указывается в отдельных точках схемы (рис.10-2) или в инструкции к прибору.

Рис.10-2 Сигнатуры, указываемые на схеме устройства

Сигнатура формируется из испытательного сигнала (тест-последовательности), вырабатываемого МП. На вход какого-либо узла подаетя тест-последовательность, состоящая не менее чем из 16 нулей и единиц. С выхода узла (контролируемой точки) снимается уже преобразованная последовательность и подается на вход сигнатурного анализатора. Сигнатурный анализатор содержит блок формирования сигнатуры БФС (рис.10-3), состоящий из 16 триггеров, связанных между собой через сумматоры по модулю 2. При работе анализатора выполняется операция деления полиномов. Входная последовательность образует делимое, схема БФС - делитель, а результат, зафиксированный в триггерах после окончания тест-последовательности, представляет собой остаток от деления. Если тест-последовательности на заводе-изготовителе и у потребителя, проводящего тест, одинаковы, а также одинаковые БФС, то при проверке исправного блока получаемая сигнатура совпадает с сигнатурой, указанной в документации.


Рис.10-3

Вероятность получения одинаковых сигнатур для двух двоичных последовательностей, отличающихся друг от друга одним битом, равна нулю, а отличающихся несколькими ошибочными битами равна 0,00001526. Иначе говоря, достоверность обнаружения ошибки >=99,998%. Проверка отдельных узлов устройства сводится к определению сигнатуры на выходе узла. Если она совпадает с заводской - узел исправен.


11 Обеспечение помехозащищенности микропроцессорных систем

11.1 Подавление помех по первичной питающей сети

При разработке микропроцессорных систем необходимо обращать особое внимание на защиту от помех, которые приводят к сбоям в работе. Значительная часть помех проникает из питающей сети. МПС, хорошо отлаженная в лабораторных условиях,может оказаться совершенно неработоспособной в производственных условиях из-за помех. Помехи возникают при резких изменениях сетевой нагрузки, например, при включении мощного электродвигателя, печи, сварочного аппарата. Поэтому следует по возможности осуществлять развязку от таких источников помех по сети. На рис.11-1 показаны различные варианты подключения устройств,в состав которых входит микропроцессор.Найлучший вариант-это питание МПС и потребителей,создающих мощные импульсы тока.(двигателей).


Рис.11-1

Для подавления кратковременных помех устанавливается сетевой фильтр рис.11-2.


Рис.11-2

В некоторых случях необходимо вводить электростатический экран (например,обычную водопроводную трубу, соединенную с заземленным корпусом щита питания) для прокладки внутри него сетевых проводов.


11.2 Подавление сетевых помех в блоке питания

Несмотря на правильное подключение, электростатический экран и наличие сетевого фильтра, помехи все же частично проникают на сетевой ввод прибора. За счет емкостной связи между сетевой и вторичной обмотками имульсные помехи проходят через силовой трансформатор и попадают на выпрямитель и далее.

Методы подавления:
1. Первичная и вторичная обмотки силового трансформатора располагаются на разных катушках. Это значительно уменьшает межобмоточную емкостную связь, но снижает кпд трансформатора.
2. Обмотки располагаются на одной катушке, но разделяются экраном из медной фольги толщиной не менее 0,2 мм, который соединяется с корпусной землей. Экран ни в коем случае не должен быть короткозамкнутым!
3. Первичная обмотка полностью заключается в экран (не короткозамкнутый), который заземляется.
4. Первичная и вторичная обмотки заключаются в отдельные экраны, и между ними размещается разделительный экран. Все экраны заземляются. Параллельно первичной обмотке подключается цепочка из последовательно соединенных С=0,1 мкФ и R=100 Ом для гашения энергии в момент выключения.

11.3 Правила заземления

В конструктивно-законченных блоках всегда имеются два типа шин «земли» - корпусная и схемная.

Корпусная шина по правилам техники безопасности в обязательном порядке подключается к шине заземления, проложенной в помещении. Схемная шина («земля» схемы прибора) не должна соединяться с корпусной, а для нее должен быть отдельный зажим, изолированный от корпуса. Если в систему входит несколько устройств, связанных информационными линиями, то далеко не безразлично, как их корпусные и схемные шины «земли» подключены к шине «земли» помещения.

При неправильном соединении импульсные напряжения, порождаемые уравнивающими токами по шине «земли», будут фактически приложены ко входам устройств, что может вызвать их ложное срабатывание.

Наименьшие взаимные помехи получаются в том случае, когда схемные шины «земли» объединяются в одной точке, а корпусные - в другой точке (рис.11-3). Расстояние между точками подбирается экспериментально. В некоторых случаях точка А может не подключаться к шине земли помещения.


Рис.11-3


11.4 Подавление помех по цепям вторичного электропитания

В моменты переключения интегральных схем и в двухтактных выходных схемах возникают большие броски тока. Из-за конечной индуктивности шин питания на платах они вызывают импульсы напряжения. Если шины тонкие, и нет развязывающих емкостей, то на «дальнем» конце шины возникают импульсы с амплитудой до 2В! Уровень таких импульсов соответствует логической единице, что вызывает сбои. Для устранения этого эффекта необходимо выполнить следующие рекомендации:
1. Шины питания и земли на платах должны иметь минимальную индуктивность. Для этого им придается решетчатая структура, покрывающая всю свободную поверхность платы.
2. Подключение внешних шин питания и земли к плате производится через несколько контактов, равномерно распределенных на разъеме.
3. Производится подавление помех вблизи мест их возникновения. Для этого около каждой ТТЛ схемы устанавливается конденсатор С=0,02 мкФ для устранения высокочастотных помех, и на группу из 10-15 схем дополнительно устанавливается электролитический конденсатор С=100 мкФ.

Применение микропроцессорных систем практически во всех электрических устройствах - важнейшая черта технической инфраструктуры современного общества. Электроэнергетика, промышленность, транспорт, системы связи существенно зависят от компьютерных систем управления. Микропроцессорные системы встраиваются в измерительные приборы, электрические аппараты, осветительные установки и д.р.

Всё это обязывает электрика знать хотя бы основы работы микропроцессорной техники.

Предназначены для автоматизации обработки информации и управления различными процессами.

Понятие «Микропроцессорная система» очень широко и объединяет такие понятия как «Электронно-вычислительная машина (ЭВМ)», «управляющая ЭВМ», «Компьютер» и т.п.

Микропроцессорная система включает в себя аппаратное обеспечение или по-английски – hardware и программное обеспечение (ПО) - software.

Цифровая информация

Микропроцессорная система работает с цифровой информацией , которая представляет собой последовательность цифровых кодов.

В основе любой микропроцессорной системы лежит микропроцессор , который способен воспринимать только двоичные числа (составленные из 0 и 1). Двоичные числа записываются посредством двоичной системы счисления. Например, в повседневной жизни мы пользуемся десятичной системой счисления, в которой для записи чисел используются десять символов или цифр 0,1,2,3,4,5,6,7,8,9. Соответственно в двоичной системе таких символов (или цифр) всего два – 0 и 1.

Необходимо понимать, что система счисления – это всего лишь правила записи чисел, и выбор типа системы определятся удобством применения. Выбор двоичной системы обусловлен её простотой, а значит надёжностью работы цифровых устройств и лёгкостью их технической реализации.

Рассмотрим единицы измерения цифровой информации:

Бит (от английского "BInary digiT" - двоичная цифра) принимает только два значения: 0 или 1. Можно закодировать логическое значение «да»» или «нет», состояние «включено» или «выключено», состояние «открыто» или «закрыто» и т.п.

Группа из восьми бит называется байтом, например 10010111. Один байт позволяет кодировать 256 значений: 00000000 – 0, 11111111 - 255.

Бит – наименьшая единица представления информации.

Байт - наименьшая единица обработки информации. Байт- часть машинного слова, состоящая обычно из 8 бит и используемая как единица количества информации при её хранении, передаче и обработке на ЭВМ. Байт служит для представления букв, слогов и специальных символов (занимающих обычно все 8 бит) или десятичных цифр (по 2 цифры в 1 байт).

Два взаимосвязанных байта называется словом, 4 байта – двойное слово, 8 байт – учетверённое слово.

Почти вся информация, которая нас окружает, является аналоговой. Поэтому, прежде чем информация попадёт на обработку в процессор, она подвергается преобразованию посредством АЦП (аналого-цифровой преобразователь). Кроме того, информация кодируется в определённом формате и может быть числовой, логической, текстовой (символьной), графической, видео и д.р.

Например, для кодирования текстовой информации используется таблица кодов ASCII (от англ. American Standard Code for Information Interchange - Американский стандартный код для обмена информацией). Запись одного символа осуществляется одним байтом, который может принимать 256 значений. Графическая информация разбивается на точки (пиксели) и производится кодирование цвета и положение каждой точки по горизонтали и вертикали.

Кроме двоичной и десятичной системы в МС используют шестнадцатеричную систему, в которой для записи чисел используются символы 0...9 и A...F. Её применение обуславливается тем, что один байт описывается двухразрядным шестнадцатеричным числом, что значительно сокращает запись цифрового кода и делает его более читаемым (11111111 – FF).

Таблица 1 – Запись чисел в различных системах счисления


Для определения значения числа (например, значения числа 100 для разных систем счисления может составлять 42, 10010, 25616), в конце числа добавляют латинскую букву, обозначающую систему счисления: для двоичных чисел букву b, для шестнадцатеричных - h, для десятичных – d. Число без дополнительного обозначения считается десятичным.

Перевод чисел из одной системы в другую и основные арифметические и логические операции над числами позволяет производить инженерный калькулятор (стандартное приложение операционной системы Windows).

Основу микропроцессорной системы составляет микропроцессор (процессор), который выполняет функции обработки информации и управления. Остальные устройства, входящие в состав микропроцессорной системы, обслуживают процессор, помогая ему в работе.

Обязательными устройствами для создания микропроцессорной системы являются порты ввода/вывода и отчасти память . Порты ввода/вывода связывают процессор с внешним миром, обеспечивая ввод информации для обработки и вывод результатов обработки, либо управляющих воздействий. К портам ввода подключают кнопки (клавиатуру), различные датчики; к портам вывода - устройства, которые допускают электрическое управление: индикаторы, дисплеи, контакторы, электроклапаны, электродвигатели и т.д.

Память нужна в первую очередь для хранения программы (либо набора программ), необходимой для работы процессора. Программа - это последовательность команд, понятных процессору, написанная человеком (чаще программистом).

Структура микропроцессорной системы представлена на рисунке 1. В упрощённом виде процессор состоит из арифметически-логического устройства (АЛУ), осуществляющего обработку цифровой информации и устройства управления (УУ).

Память обычно включает постоянно-запоминающее устройство (ПЗУ), являющееся энергонезависимым и предназначенное для долговременного хранения информации (например, программ), и оперативно-запоминающее устройство (ОЗУ), предназначенное для временного хранения данных.


Рисунок 1 – Структура микропроцессорной системы

Процессор, порты и память взаимодействуют между собой посредством шин. Шина – это набор проводников, объединённых по функциональному признаку. Единый набор системных шин называют внутрисистемная магистраль , в которой выделяют:

    шину данных DB (Data Bus), по которой производится обмен данными между ЦП, памятью и портами;

    шину адреса AB (Address Bus), используемой для адресации процессором ячеек памяти и портов;

    шину управления CB (Control Bus), набор линий, передающих различные управляющие сигналы от процессора на внешние устройства и обратно.

Микропроцессоры

Микропроцессор - программно-управляемое устройство, предназначенное для обработки цифровой информации и управления процессом этой обработки, выполненное в виде одной (или нескольких) интегральной схемы с высокой степенью интеграции электронных элементов.

Микропроцессор характеризуется большим числом параметров, поскольку он одновременно является сложным программно-управляемым устройством и электронным прибором (микросхемой). Поэтому для микропроцессора важны, как тип корпуса, так и система команд процессора . Возможности микропроцессора определяются понятием архитектуры микропроцессора.

Приставка «микро» в названии процессора означает, что выполняется он по микронной технологии.

Рисунок 2 – Внешний вид микропроцессора Intel Pentium 4

В ходе работы микропроцессор считывает команды программы из памяти или порта ввода и исполняет их. Что означает каждая команда, определяется системой команд процессора. Система команд заложена в архитектуре микропроцессора и выполнение кода команды выражается в проведении внутренними элементами процессора определённых микроопераций.

Архитектура микропроцессора - это его логическая организация; она определяет возможности микропроцессора по аппаратной и программной реализации функций, необходимых для построения микропроцессорной системы.

Основные характеристики микропроцессоров:

1) Тактовая частота (единица измерения МГц или ГГц) – количество тактовых импульсов за 1 секунду. Тактовые импульсы вырабатывает тактовый генератор, который чаще всего находится внутри процессора. Т.к. все операции (инструкции) выполняются по тактам, то от значения тактовой частоты зависит производительность работы (количество выполняемых операций в единицу времени). Частотой процессора можно варьировать в определённых пределах.

2) Разрядность процессора (8, 16, 32, 64 бит и т.д.) – определяет число байтов данных, обрабатываемых за один такт. Разрядность процессора определяется разрядностью его внутренних регистров. Процессор может быть 8-разрядным, 16-разрядным, 32-разрядным, 64-разрядным и т.д., т.е. данные обрабатываются порциями по 1, 2, 4, 8 байт. Понятно, что чем больше разрядность, тем выше производительность работы.

Внутренняя архитектура микропроцессора

Упрощенная внутренняя архитектура типового 8-разрядного микропроцессора показана на рисунке 3. В структуре микропроцессора можно выделить три основных части:

1) Регистры для временного хранения команд, данных и адресов;

2) Арифметико-логическое устройство (АЛУ) , которое реализует арифметические и ло-гические операции;

3) Схема управления и синхронизации - обеспечивает выборку команд, организует функционирование АЛУ, обеспечивает доступ ко всем регистрам микропроцессора, воспринимает и генерирует внешние управляющие сигналы.

Рисунок 3 - Упрощенная внутренняя архитектура 8-разрядного микропроцессора

Как видно из схемы, основу процессора составляют регистры, которые делятся на специальные (имеющие определенное назначение) и регистры общего назначения.

Программный счетчик (PC) - регистр, содержащий адрес следующего командного байта. Процессор должен знать, какая команда будет выполняться следующей.

Аккумулятор – регистр, используемый в подавляющем большинстве команд логической и арифметической отработки; он одновременно является и источником одного из байт данных, которые требуются для операции АЛУ, и местом, куда помещается результат операции АЛУ.

Регистр признаков (или регистр флагов) содержит информацию о внутреннем состоянии микропроцессора, в частности о результате последней операции АЛУ. Регистр флагов не является регистром в обычном смысле, а представляет собой просто набор триггер-защелок (флаг поднят или опущен. Обычно имеются флаж¬ки нуля, переполнения, отрицательного результата и переноса.

Указатель стека (SP) - следит за положением стека, т. е. содержит адрес последней его использованной ячейки. Стек – способ организации хранения данных.

Регистр команды содержит текущий командный байт, который декодируется дешифратором команды.

Линии внешних шин изолированы от линий внутренней шины с помощью буферов, а основные внутренние элементы связаны быстродействующей внутренней шиной данных.

Для повышения производительности многопроцессорной системы функции центрального процессора могут распределяться между несколькими процессорами. В помощь центральному процессору в компьютер часто вводят сопроцессоры , ориентированные на эффективное исполнение каких-либо специфических функций. Широко распространены математические и графические , сопроцессоры ввода-вывода , разгружающие центральный процессор от несложных, но многочисленных операций взаимодействия с внешними устройствами.

На современном этапе основным направлением повышения производительности является разработка многоядерных процессоров , т.е. объединение в одном корпусе двух и более процессоров, с целью выполнения нескольких операций параллельно (одновременно).

Лидирующими компаниями по разработке и изготовлению процессоров являются Intel и AMD.

Алгоритм работы микропроцессорной системы

Алгоритм - точное предписание, однозначно задающее процесс преобразования исходной информации в последовательность операций, позволяющих решать совокупность задач определённого класса и получать искомый результат.

Главным управляющим элементом всей микропроцессорной системы является процессор . Именно он, за исключением нескольких особых случаев, управляет всеми остальными устройствами. Остальные же устройства, такие, как ОЗУ, ПЗУ и порты ввода/вывода являются ведомыми.

Сразу после включения процессор начинает читать цифровые коды из той области памяти, которая отведена для хранения программ. Чтение происходит последовательно ячейка за ячейкой, начиная с самой первой. В ячейке записаны данные, адреса и команды. Команда - это одно из элементарных действий, которое способен выполнить микропроцессор. Вся работа микропроцессора сводится к последовательному чтению и выполнению команд.

Рассмотрим последовательность действий микропроцессор во время выполнения команд программы:

1) Перед выполнением очередной команды микропроцессор содержит ее адрес в программном счетчике РС.

2) МП обращается к памяти по адресу, содержащемуся в РС, и считывает из памяти первый байт очередной команды в регистр команд.

3) Дешифратор команд декодирует (расшифровывает) код команды.

4) В соответствии с полученной от дешифратора информацией устройство управления вырабатывает упорядоченную во времени последовательность микроопераций, реализующих предписания команды, в том числе:

Извлекает операнды из регистров и памяти;

Выполняет над ними предписанные кодом команды арифметические, логические или другие операции;

В зависимости от длины команды модифицирует содержимое РС;

Передает управление очередной команде, адрес которой снова находится в программном счетчике РС.

Совокупность команд микропроцессора можно разделить на три группы:

1) Команды перемещения данных

Перемещение происходит между памятью, процессором, портами ввода/вывода (каждый порт имеет свой собственный адрес), между регистрами процессора.

2) Команды преобразования данных

Любые данные (текст, рисунок, видеоролик и т.д.) представляют собой числа, а с числами можно выполнять только арифметические и логические операции. Поэтому к командам этой группы относятся сложение, вычитание, сравнение, логические операции и т.п.

3) Команда передачи управления

Очень редко программа состоит из одной последовательной команд. Подавляющее число алгоритмов требуют разветвления программы. Для того, чтобы программа имела возможность менять алгоритм своей работы в зависимости от какого-либо условия, и служат команды передачи управления. Данные команды обеспечивают протекание выполнения программы по разным путям и организуют циклы.

Внешние устройства

К внешним, относятся все устройства, находящиеся вне процессора (кроме оперативной памяти) и подключаемые через порты ввода/вывода. Внешние устройства можно подразделить на три группы:

1) устройства для связи человек-ЭВМ (клавиатура, монитор, принтер и т.д.);

2) устройства для связи с объектами управления (датчики, исполнительные механизмы, АЦП и ЦАП);

3) внешние запоминающие устройтсва большой ёмкости (жёсткий диск, дисководы).

Внешние устройства подключаются к микропроцессорной системе физически - с помощью разъёмов, и логически - с помощью портов (контроллеров).

Для взаимодействия процессора и внешних устройств применяется система (механизм) прерываний.

Система прерываний

Это специальный механизм, который позволяет в любой момент, по внешнему сигналу заставить процессор приостановить выполнение основной программы, выполнить операции, связанные с вызывающим прерывание событием, а затем вернуться к выполнению основной программы.

У любого микропроцессора имеется хотя бы один вход запроса на прерывание INT (от слова Interrupt - прерывание).

Рассмотрим пример взаимодействия процессора персонального компьютера с клавиатурой (рисунок 4).

Клавиатура - устройство для ввода символьной информации и команд управления. Для подключения клавиатуры в компьютере имеется специальный порт клавиатуры (микросхема).


Рисунок 4 – Работа процессора с клавиатурой

Алгоритм работы:

1) При нажатии клавиши контроллер клавиатуры формирует цифровой код. Этот сигнал поступает в микросхему порта клавиатуры.

2) Порт клавиатуры посылает процессору сигнал прерывания. Каждое внешнее устройство имеет свой номер прерывания, по которому процессор его и распознаёт.

3) Получив прерывание от клавиатуры, процессор прерывает выполнение программы (например, редактор Microsoft Office Word) и загружает из памяти программу обработки кодов с клавиатуры. Такая программа называет драйвер.

4) Эта программа направляет процессор к порту клавиатуры, и цифровой код загружается в регистр процессора.

5) Цифровой код сохраняется в памяти, и процессор переходит к выполнению другой задачи.

Благодаря высокой скорости работы, процессор выполняет одновременно большое количество процессов.

8.1 Системы счисления

В цифровой и вычислительной технике сигналы и информация представляются в дискретной форме. Для удобства последующего преобразования дискретный сигнал подвергается кодированию. Большинство кодов основано на системах счисления, причем использующих позиционный принцип образования числа, при котором значение каждой цифры зависит от ее положения (позиции, веса) в числе.

Примером позиционной формы записи чисел является та, которой мы пользуемся (так называемая арабская форма чисел). Так, в числах 123 и 321 значения цифры 3, например, определяются ее положением в числе: в первом случае она обозначает три единицы (т.е. просто три), а во втором – три сотни (т.е. триста).

В современной информатике используются в основном три системы счисления (все – позиционные): двоичная, шестнадцатеричная и десятичная.

Двоичная система счисления используется для кодирования дискретного сигнала, потребителем которого является вычислительная техника. Такое положение дел сложилось исторически, поскольку двоичный сигнал проще представлять на аппаратном уровне. В этой системе счисления для представления числа применяются два знака – 0 и 1.

Шестнадцатеричная система счисления используется для кодирования дискретного сигнала, потребителем которого является хорошо подготовленный пользователь – специалист в области информатики. В такой форме представляется содержимое любого файла, затребованное через интегрированные оболочки операционной системы, например, средствами Norton Commander в случае MS DOS. Используемые знаки для представления числа – десятичные цифры от 0 до 9 и буквы латинского алфавита – A, B, C, D, E, F.

Десятичная система счисления используется для кодирования дискретного сигнала, потребителем которого является так называемый конечный пользователь – неспециалист в области информатики (очевидно, что и любой человек может выступать в роли такого потребителя). Используемые знаки для представления числа – цифры от 0 до 9.

В любой позиционной системе счисления число можно представить в виде полинома вида

N = a n-1 b n-1 + a n-2 b n-2 +…. + + a 0 b 0 , a m b m + a m-1 b m -1 + a m-i b m –I , (8.1)

где n – количество разрядов целой части числа,

где m – количество разрядов дробной части числа,

b – основание системы счисления,

ai – множитель, принимающий любые целочисленные значения от 0 до b-1, и соответствующий цифре i-го порядка числа.

Двоичная система счисления - число представляется совокупностью цифр 0 и 1, которые называются битами (binary digits – двоичные цифры). Основание системы счисления b = 2.

Шестнадцатеричная система счисления – для записи чисел используют цифры от 0 до 9 и буквы латинского алфавита A (10), B (11), C (12), D (13), E (14), F (15).

Перевод из десятичной системы счисления в двоичную и шестнадцатеричную:

Для перевода чисел из одной системы счисления в другую используют метод деления (целая часть числа) – умножения (дробная часть числа) на основание системы счисления.

Перевод целой части числа:

а) исходное целое число делится на основание системы счисления, в которую переводится (на 2 - при переводе в двоичную систему счисления или на 16 - при переводе в шестнадцатеричную); получается частное и остаток;

б) если полученное частное меньше основания системы счисления, в которую выполняется перевод, процесс деления прекращается, переходят к шагу в). Иначе над частным выполняют действия, описанные в шаге а);

в) все полученные остатки и последнее частное преобразуются в соответствии с таблицей перевода в цифры той системы счисления, в которую выполняется перевод;

г) формируется результирующее число: его старший разряд (бит) – полученный последний остаток; каждый последующий младший разряд образуется из полученных предыдущих остатков от деления. Таким образом, младший разряд полученного числа – первый остаток от деления, а старший – последний остаток от деления.

Выполнить перевод числа 19 в двоичную систему счисления:

Выполнить перевод числа 173 в шестнадцатеричную систему счисления:

Перевод дробной части числа из десятичной системы в любую другую позиционную систему счисления.

При переводе правильной десятичной дроби в систему счисления с основанием b необходимо сначала саму дробь, а затем дробные части всех последующих произведений последовательно умножать на b, отделяя после каждого умножения целую часть произведения. Число в новой системе счисления записывается как последовательность полученных целых частей произведения. Умножение производится до тех поp, пока дробная часть произведения не станет равной нулю. Это значит, что сделан точный перевод. В противном случае перевод осуществляется до заданной точности. Достаточно того количества цифр в результате, которое поместится в ячейку.

Пример . Выполнить перевод числа 0,847 в двоичную систему счисления. Перевод выполнить до четырех значащих цифр после запятой.

Пример . Выполнить перевод числа 0,847 в шестнадцатеричную систему счисления. Перевод выполнить до трех значащих цифр.

Для различения систем счисления, в которых представлены числа, в обозначение двоичных и шестнадцатеричных чисел вводят дополнительные реквизиты:

для двоичных чисел – нижний индекс справа от числа в виде цифры 2 либо знак B или b (binary – двоичный), справа от числа. Например, 101000 2 = 101000B = 101000b;

для шестнадцатеричных чисел - нижний индекс справа от числа в виде числа 16 либо знак H или h (hexadecimal – шестнадцатеричный), справа от числа. Например, 3AB 16 = 3ABH = 3ABh.

Перевод из двоичной или шестнадцатеричной систем счисления в десятичную выполняется по соотношению (8.1).

Группа из 8 битов информации называется байтом. Если бит - минимальная единица информации, то байт ее основная единица. Существуют производные единицы информации: килобайт (кбайт, кб), мегабайт (Мбайт, Мб) и гигабайт (Гбайт, Гб).

1 кб =1024 байта.

1 Мб = 1024 кбайта = 1024 x 1024 байтов.

1 Гб = 1024 Мбайта = 1024х1024 х 1024 байтов.

Эти единицы чаще всего используют для указания объема памяти ЭВМ.

8.2. Счетчики импульсов

Счетчик – это последовательная схема, в основе которой лежит регистр (последовательное соединение триггеров). Поскольку любая последовательная схема имеет конечное число состояний, то счетная последовательность счетчика либо завершается неким определенным состоянием (счетчики с конечным состоянием или счетчики с насыщением), либо циклически повторяется – счетчики по модулю (mod). Термин модуль используется для обозначения числа различных состояний счетной последовательности. Например, в счетчике по mod = 6 после прихода на вход шестого импульса счетчик обнуляется и процесс счета повторяется снова. Если в счетчике n триггеров, то число возможных состояний счетчика равно 2 n и следовательно его модуль равен mod = 2 n .

Счетчики строятся на базе синхронных триггеров (D, T). В зависимости от способа соединения синхронизирующих входов триггеров, двоичные счетчики подразделяются на синхронные и асинхронные.

В зависимости от модуля они подразделяются на десятичные (декадные), у которых

mod = 10 и двоичные с mod = 2 n .

В зависимости от направления счета они подразделяются на суммирующие, вычитающие или реверсивные (направление счета можно менять).

Синхронные счетчики. Функциональная схема синхронного двоичного счетчика на базе Т-триггеров и временная диаграмма его работы представлены на рис. 8.1.


Так как в счетчике общая синхронизация, то состояние триггеров меняется синхронно, т. е. те триггеры, которые должны изменить своё состояние по синхроимпульсу, делают это синхронно. В частности, если в момент времени t 0 все триггеры исходно обнулены, то после подачи на линию «разрешение счета» сигнала Т = 1 в единичном состоянии будет только первый триггер (Q 0 =1) после прихода импульса синхронизации. Все остальные – в нулевом, так как через схемы И их входы Т блокированы нулевым потенциалом. С приходом второго тактового импульса к изменению своего состояния на единичное будет подготовлен второй триггер и по заднему фронту второго импульса синхронизации триггеры примут новое состояние: Q 0 = 0, Q 1 = 1, Q 2 = 0.

Число импульсов, пришедших на вход счетчика, можно определить по соотношению:

N = Q 0 2 0 + Q 1 2 1 + Q 2 2 2 + … + Q n -1 2 n -1 (8.2).

Описанный выше способ формирования сигналов на Т входов триггеров используется в счетчиках с последовательным переносом. Применение вентилей И для формирования сигналов на входах Т приводит к снижению скорости счета, так как после прохождения синхроимпульса следующий нельзя подавать до тех пор, пока не определятся все значения на входах Т. Для n-разрядного счетчика требуется время t зад = τ в (n – 1), где τ в – время задержки распространения сигнала через один вентиль.

Этот недостаток устраняется в счетчиках со сквозным переносом за счет усложнения схемы подачи сигналов на Т входы триггеров.

Асинхронные счетчики .

В асинхронных счетчиках входы синхронизации триггеров, кроме первого, соединены с выходами предыдущих триггеров (рис. 8.2), а входы Т объединены в общую линию «разрешение счета», поэтому состояние триггера меняется в ответ на изменение состояния предыдущего.


DD3
а
Если на линию «разрешение счета» подана логическая 1, то каждое «отрицательное» изменение состояния каждого левого триггера (задний фронт импульса) вызовет изменение состояния последующего и т.д. В асинхронных счетчиках возможен сбой в процессе передачи информации от триггера к триггеру. Они находят широкое применение в качестве делителей частоты на любую степень двойки f вых = f вх / 2 n .

Все рассмотренные счетчики являются суммирующими двоичными счетчиками. Они легко могут быть перестроены в вычитающие. Для этого, например, в схеме рис. 8.1 достаточно переключить входы вентилей И с выходов Q на инверсные .

8.3. Микроконтроллеры.

8.3.1. Принципы организации микроконтроллеров ; архитектура микропроцессоров и их функционирование, структура микроконтроллеров.

В современной технике микроконтроллеры находят очень широкое применение. На их основе строятся датчики измерения физических параметров с линейными характеристиками, регуляторы параметров технологических процессов, системы сбора и передачи данных, информационные системы и системы автоматического управления различного класса. Современное понятие микроконтроллер возникло в связи с мощным развитием и совершенствованием микроэлектроники и является естественным развитием более старых понятий, таких как ЭВМ, микро-ЭВМ, употреблявшихся в 70 – 80 годы прошлого столетия. Однако основные, базовые принципы организации функционирования вычислительных систем остаются.

По определению ЭВМ – это искусственная, инженерная система, предназначенная для выполнения вычислений на основе алгоритмов. Принципы ее построения определяются с одной стороны, назначением ЭВМ, а с другой – элементной базой. Совершенствование элементной базы и привело к появлению в конце 20 века такого понятия как микроконтроллер. Современная вычислительная техника строится на одном из важных принципов – принципе программного управления , предложенного Дж. Фон Нейманом в 1945 г. Эти принципы следующие:

1. Информация кодируется в двоичной форме и разделяется на единицы информации, называемые словами.

2. Разнотипные слова информации различаются по способу использования, но не способом кодирования. Все слова, представляющие числа, команды и т.д. выглядят в ЭВМ совершенно одинаково и сами по себе неразличимы. Только порядок использования слов в программе вносит различия в слова. Благодаря этому возможно использовать одни и те же операции для обработки и чисел и команд.

3. Слова информации размещаются в ячейках памяти и идентифицируются номерами ячеек, называемых адресами слов.

4. Алгоритм представляется в форме последовательности управляющих слов, которые определяют наименование операции и слова информации, участвующие в операции, и называются командами.

5. Выполнение вычислений, предписанных алгоритмом, сводится к последовательному выполнению команд в порядке, определяемом программой.

Принцип программного управления предполагает, что алгоритм в ЭВМ представляется в виде упорядоченной последовательности команд вида

b 0 b 1 ...b l b 0 b 1 ...b m … b 0 b 1 ...b n ,


где b – двоичная переменная. Определенное число первых разрядов команды характеризует код операции (КОП) – характер выполняемых действий (+, -, * ,и т.д.). Последуюшие наборы двоичных переменных (А1 …А n) определяют адреса операндов (аргументов и результатов), заданных кодом КОП. Процесс вычислений, выполняемый по заданной программе, состоит в последовательном выполнении команд. Первой выполняется команда, заданная пусковым адресом программы. Обычно это адрес первой команды программы.

В состав современного микроконтроллера входят: ядро (микропроцессор); память данных (оперативное запоминающее устройство - ОЗУ (RAM)); память программ (постоянное запоминающее устройство – ПЗУ (ROM) или Flash-память); периферийные устройства: контроллеры прерываний, порты ввода-вывода, ШИМ- генераторы, таймеры, АЦП, ЦАП, порты для последовательной передачи данных – USART, I 2 C, SPI и т.д. Все эти устройства выполняются, как правило, на одном кристалле и помещаются в одном корпусе.

8.3.2. Архитектура микропроцессоров и их функционирование.

Основным элементом микроконтроллера является микропроцессор (МП). Первый коммерческий микропроцессор Intel -8080 был разработан фирмой Intel в 1975 г. Микропроцессор – это функциональный блок, предназначенный для логической и арифметической обработки информации на основе принципа программного управления. Современные микропроцессоры выполняются, как правило, по КМОП технологии и содержат десятки и сотни тысяч элементов, имеют высокое быстродействие – от 10Mips (миллионов операций в секунду) и более, 8, 16 или 32 –разрядную шину данных, 18, 24-разрядную и более шину адреса (речь идет о микропроцессорах для промышленного применения).

В настоящее время основными являются две архитектуры микропроцессоров - неймановская, основанная на принципах, сформулированных фон Нейманом и Гарвардская архитектура. Неймановская архитектура предполагает, что память в системе линейна, т. е. безразлично, в каких областях располагается ОЗУ и ПЗУ. Гарвардская архитектура предлагает жесткое разделение информации на команды и данные и поэтому в архитектуре предусмотрено хранение команд в памяти команд, а операндов – памяти данных.

Из-за сложности схемы, пользователю программно-доступны только основные регистры управления микропроцессором. Рассмотрим архитектуру неймановского процессора с позиций, предоставленных пользователю (рис.8.3).


С периферийными устройствами МП связан с помощью системы шин: External Data Bus -двунаправленная n-разрядная внешняя шина данных; External Address Bus - однонаправленная m-разрядная внешняя шина адреса; Control Bus однонаправленная k-разрядная шина управления (одни разряды шины работают только на ввод, другие – только на вывод). Все шины с тремя состояниями.

Основными устройствами МП являются:

1. АЛУ – арифметико логическое устройство; предназначено для выполнения арифметических (+, -, *, /) и логических операций (И, ИЛИ, НЕ, Исключающее ИЛИ, операции сдвига). В состав АЛУ входят n-разрядные сумматоры, аппаратные умножители и схемы деления. АЛУ связано с регистром признаковFR (Flags Register).

2. В регистре признаков фиксируются результаты операций (при выполнении того или иного условия автоматически взводится определенный бит регистра):

Z (Zero) – нулевой результат операции; устанавливается, если результатом выполнения последней операции в АЛУ является ноль;

S (Sing) или N (Negative) – флаг отрицательного знака при выполнении операции (устанавливается если при выполнении операции в АЛУ получается отрицательное число);

C (Carry) – флаг переноса; устанавливается, если при выполнении операции в АЛУ был установлен бит переноса;

V – флаг переполнения; устанавливается, если при выполнении операции в АЛУ имело место переполнение.

3. GPR (General Pupas Registers) –регистры общего назначения. Предназначены для временного хранения информации, располагаются, как правило, во внутреннем ОЗУ процессора и имеют минимальное время доступа.

SP (Stack Pointer ) – указатель стека; это регистр, который содержит адрес ячейки памяти, являющейся вершиной стековой памяти. Стековая память, как правило, создается в оперативной памяти и предназначена для временного хранения информации, в частности при выполнении некоторых команд, например, вызова подпрограмм, возврата из подпрограмм, обработки прерывании и т.д.

PC (Program counter) – программный счетчик, счетчик команд; содержит адрес ячейки памяти, из которой выбирается следующая команда. Во время выборки команды содержимое счетчика передается в регистр адреса RA и из него через буферную схему поступает на внешнюю шину адреса. С помощью схемы приращения СхП содержимое счетчика команд увеличивается на 1 или 2 в зависимости от длины слова, с которым обменивается процессор (один или два байта) для указания адреса следующей команды.

IR (Instruction Register) – первое слово команды, выбранное из программной памяти, передается через буфер данных и внутреннюю шину данных в IR , выход которого связан с дешифратором команд и формирователем машинных циклов DC и ФМЦ, который по КОП в команде определяет тип выполняемой операции.

Устройство управления и синхронизации (УУС) – вырабатывает управляющие и синхронизирующие сигналы, необходимые для выполнения принятой и дешифрированной команды, подключая необходимые устройства процессора. С помощью k-внешних линий управления (Control Bus) реализуется интерфейс процессора с другими модулями микроконтроллера. Некоторые из этих сигналов:

F CLK - тактовая частота процессора; синхронизирует работу всех устройств и определяет время выполнения команд (быстродействие МП).

RESET – выходной сигнал сброса; обнуляет все основные регистры процессора, в том числе программного счетчика РС, указывая при старте на ячейку памяти 0000h, из которой должна быть считана первая команда программы.

WR (Write) – запись в память, внешнее устройство;

RD (Read) – чтение из памяти, из внешнего устройства.

Современные процессоры выполняются по RISC (Reduce Instruction Set Computering) архитектуре (выполнение вычислений по минимизированным командам). Это обеспечивает выполнение большинства команд за очень малое время даже при относительно не высоких тактовых частотах процессора. Например, МП SAB80C167 фирмы Siemens при тактовой частоте 20 МГц выполняет большинство команд за 100 нс.

8.3.3. Структура микроконтроллеров

В качестве примера ниже дано краткое описание промышленного микроконтроллера М167-2.

Промышленный контроллер М167-2, структурная схема которого приведена на рис.8.4., разработан на базе микроконтроллера Siemens 80С167, ядром которого является 16-разрядный RISC процессор SAB80C167 . В основу работы процессора положена конвейерная организация выполнения команд, благодаря чему для выполнения большин­ства из них требуется 100 наносекунд при тактовой частоте процессора 20 МГц.

Центральное процессорное устройство имеет фон-Неймановскую архитектуру, что обеспечивает доступ к исполняемому коду в пределах единого линейного адресного пространства. Максимальный размер адресуемой памяти составляет 16 Мбайт, которая разделена на 256 сегментов (Code Segment) по 64 Кбайт в каждом. Каждый сегмент со­стоит из четырех страниц данных (Data Page) размером по 16 Кбайт.

Процессор имеет внутреннее ОЗУ объемом 2 Кбайт (1Кх16), расположенное в третьей странице данных нулевого сегмента (00.F000h – 00.FFFFh).Во внутреннем ОЗУ размещены регистры общего (GPR) и специального (SFR и ESFR) назначения.

Система обработки прерываний контроллера обрабатывает более 56 независимых каналов прерываний. Текущее состояние программы (IP, PSW, CSP) сохраняется во внут­реннем системном стеке. Шестнадцати уровневая система приоритетов с четырех уровне­вым (групповым) приоритетом второго уровня позволяет организовать обработку преры­ваний по приоритету. Кроме того, в состав контроллера входит 8 канальный блок РЕС (событийный контроллер), с помощью которого можно осуществлять пересылку данных между периферийными устройствами и областями памяти в режиме прерываний без уча­стия основного процессора.

Контроллер внешней шины позволяет задать четыре типа внешней шины и изме­нять их временные характеристики.

Входящие в состав контроллера блоки «Захват/Сравнение» и блоки таймеров по­зволяют организовать дополнительные ШИМ каналы (до 28) кроме стандартного четырех канального модуля ШИМ, а так же формировать и измерять параметры импульсных сиг­налов.

Микроконтроллер обеспечивает 111 параллельных каналов ввода/вывода, органи­зованных в 16- или 8-битовые порты. Все выводы портов битадресуемы и индивидуально (побитно) программируются на ввод или вывод.

Кроме того, в состав микроконтроллера входят два АЦП (8 и 16 каналов) и сете­вой контроллер CAN со скоростью передачи до 1 Мбит/сек. CAN контроллер позволяет создавать сложные распределенные системы управления реального времени.

Наличие встроенного полноэкранного отладчика обеспечивает режим интерак­тивного доступа ко всем ресурсам микроконтроллера и удобный интерфейс для отладки программ, что позволяет быстро и эффективно отлаживать программы в реальном вре­мени с подключенными внешними устройствами. С помощью специальных функций от­ладчика и программатора, находящегося на плате контроллера, программа после оконча­ния разработки и отладки может быть записана во Flash ПЗУ.


Литература

1 Гальперин М.В. Электронная техника. Учебник. – 2-е изд., испр. и доп.

– Форум, 2014.

2 Готтлиб И. М. Источники питания. Инверторы, конверторы, линейные и импульсные стабилизаторы. – Постмаркет, 2008.

3 Шило В. Л. Популярные цифровые микросхемы. Справочник.

– Челябинск: Металлургия, 1989.

4 Гусев В. Г. Электроника и микропроцессорная техника. Учебник для вузов. – 5 изд. – М.: Высшая школа, 2008.

Интернет-ресурсы

1 Белов Н.В., Волков Ю.С. Электротехника и основы электроники. – СПб.: Лань, 2012. – Режим доступа: http://e.lanbook.com.

2 Ефимов И.Е., Козырь И.Я. Основы микроэлектроники. – СПб.: Лань, 2008. – Режим доступа: http://e.lanbook.com.

3 Игнатов А.Н. Оптоэлектроника и нанофотоника. . – СПб.: Лань, 2011. – Режим доступа: http://e.lanbook.com.

Тема 3

Рекомедуемая литература

1. Хофманн М. Микромикроконтроллеры для начинающих: Пер. с нем. – СПб.: БХВ – Петербург, 2010. – 304 с.

2. Голубцов М.С. Микромикроконтроллеры AVR: от простого к сложному. – М.: СОЛОН-Пресс, 2003. – 288 с.

3. Схемотехника электронных систем. Микропроцессоры и микромикроконтроллеры / В.И. Бойко, А.Н. Гуржий, В.Я. Жуйков, А.А. Зори, В.М. Спивак, Т.А. Терещенко, Ю.С. Петергеря. – СПб.: БХВ – Петербург, 2004. – 464 с.

Основные понятия и определения микропроцессорной техники

Микропроцессорная система (микроконтроллер, компьютер) представляют собой совокупность аппаратных средств (АС) и программного обеспечения (ПО), которые тесно взаимосвязаны и практически бесполезны друг без друга.

Микропроцессорная система (МП система) - информационная или управляющая система, построенная с применением микропроцессорных средств.

Микропроцессор (МП - CPU) – устройство обработки данных (информации) - выполняет арифметические и логические операции и осуществляет программное управление процессом обработки.

Микромикроконтроллер (МК - МС) – микропроцессорное устройство, в основном, с небольшими вычислительными ресурсами и упрощенной системой команд, ориентированный не на производство вычислений, а на выполнение логического управления машинами или, технологическими процессами.

Адаптер – устройство для согласования физических параметров (входных и выходных сигналов) устройств с целью их сопряжения.

Интерфейс – полная совокупность физических и логических соглашений о входных и выходных сигналах устройств с целью их сопряжения.

Совокупность аппаратных, программных и конструктивных средств, обеспечивающих взаимодействие функциональных устройств ЭВМ, называется внутренним системным интерфейсом (ШУ, ШД, ША).

Структура микропроцессора

Внешний вид микропроцессора приведен на рисунке 1.

Рисунок 1 - Внешний вид микропроцессора

Микропроцессор (МП) состоит из следующих структурных блоков (см. рисунок 1):

─ внутренней шины;

─ регистров общего назначения;

─ арифметико-логического устройства (АЛУ);

─ буфера шины адреса;

─ буфера шины данных;

─ устройства управления и синхронизации;

─ регистра команд.

(Регистр- последовательное логическое устройство, используемое для хранения n-разрядных двоичных чисел и выполнения преобразований над ними. Регистр представляет собой упорядоченную последовательность триггеров, число которых соответствует числу разрядов в слове.

Для связи между собой структурных блоков микропроцессора предназначена внутренняя шина.

Регистры общего назначения (РОН) содержат регистр адреса; программный счетчик; указатель стека; оперативные парные регистры: W Z; D C. D E, H L,мультиплексор.

В состав АЛУ входят буфер и аккумулятор для промежуточного хранения исходной цифровой информации; арифметико-логическое устройство; регистр признаков.

Регистр адреса служит для промежуточного хранения адреса обращения микропроцессора к конкретному структурному блоку системы. Этот адрес в регистр заносится перед посылкой его в шину адреса.

Рисунок 1 – Структурная схема микропроцессора

Программный счетчик служит для формирования адреса обращения к ячейкам памяти, в которых хранятся команды программы управления микропроцессорной системы. При выполнении очередной команды алгоритма управления объектом содержание счетчика увеличивается автоматически на единицу, если этот алгоритм линейный.

Стеком называют часть оперативной памяти, в ячейки которой последовательно записывают оперативную информацию. При записи этой информации указатель стека автоматически увеличивается на число заполненных при записи ячеек памяти. И наоборот, при считывании информации из стека его ячейки последовательно очищаются, а указатель стека уменьшается на число таких очищенных ячеек.

Кроме того, для хранения оперативной информации служат парные оперативные регистры общего назначения W и Z, B и C, D и E, H и L, обращение к которым осуществляется через мультиплексор. Часть этих регистров предназначена для хранения адресной части команд, в то время как их исполнительная часть хранится в регистре команд.

Структура микроконтроллера

На рисунке 1 приведена упрощённая типичная структура микроконтроллер (МК) предназначенного для обработки данных или управления некоторой машиной или технологическим процессом.

В этой структуре центральное место занимает микропроцессор (МП), который выполняет арифметические и логические операции над данными, осуществляет программное управление процессом обработки информации, организует взаимодействие всех устройств входящих в МК.

Работа МП происходит под воздействием сигналов (тактовых прямоугольных импульсов – ГТИ) схемы синхронизации и начальной установки.

Приведенная структура МК, отражает магистрально-модульный принцип организации микропроцессорного устройства. Отдельные блоки являются унифицированными функционально законченными модулями со своими схемами управления.

Обмен информацией между модулями микроконтроллера осуществляется посредством коллективных шин (магистралей – ША, ШД, ШУ) к которым имеют доступ модули микроконтроллера, то есть обмен информацией производится путём разделения использования во времени, модулями системы коллективных шин. Магистральный принцип сопряжения модулей предполагает наличие унифицированных аппаратных, программных и конструктивных средств, обеспечивающих установление связей и взаимодействие всех модулей микроконтроллера, и называется внутренним системным интерфейсом.

Для микроконтроллера характерна трех шинная структура, содержащая шину адреса (ША), шину данных (ШД) и шину управления (ШУ). Типовая структура микроконтроллера, предполагает наличие общего сопряжения (интерфейса) для модулей памяти - постоянных и оперативных запоминающих устройств (ПЗУ и ОЗУ) и периферийных устройств ввода/вывода (УВВ) и внешнего ОЗУ.

Постоянное запоминающее устройство (ПЗУ) служит для хранения отлаженного алгоритма управления объектом или для хранения мало меняющейся цифровой информации, используемой в управлении объектом. Микропроцессор может только считывать информацию из ПЗУ.

Оперативное запоминающее устройство (ОЗУ) служит для хранения любой информации, используемой в управлении объектом, в том числе и для хранения программ управления объектом. ОЗУ имеет двустороннюю связь с микропроцессором.

В качестве внешних (периферийных) устройств для микроконтроллера являются: органы управления, клавиатура, дисплей, органы индикации, внешняя память, различные датчики, исполнительные устройства и. т. д.

Периферийные устройства подключаются к шинам интерфейса через интерфейсные БИС – параллельный программируемый адаптер (ППА – PPI), микроконтроллер клавиатуры и дисплея (ККД), программируемый универсальный синхронно-асинхронный приёмник-передатчик (УСАПП – USART)- последовательный интерфейс и другие аппаратные средства.

Программируемый параллельный интерфейс служит для связи микропроцессора с дискретными или аналоговыми объектами управления, в качестве которых могут быть датчики или исполнительные устройства объектов управления.

Программируемый последовательный интерфейс служит для передачи в последовательном коде цифровых сигналов к объектам управления или к другим микропроцессорным системам, расположенным на значительном расстоянии от микропроцессора. Двусторонняя (дуплексная) передача сигнала по линии последовательной связи осуществляется по некоторым правилам, которые называют протоколом передачи данных

Внутренний системный интерфейс



Шина адреса - ША

Шина данных ШД

Шина управления - ШУ

Интерфейс памяти Устройства ввода-вывода - УВВ

Интерфейс периферийного оборудования

Рисунок 1- Структурная схема микроконтроллера

В структуре микроконтроллера интерфейс является узким местом из-за ограниченного числа выводов корпуса МП. Узкий интерфейс приводит к необходимости применения двунаправленных линий передачи информации, что усложняет схемы буферов и вызывает необходимость использования временного мультиплексирования шин. Мультиплексирование шин позволяет при ограниченном числе линий интерфейса передавать по ним различную информацию; адреса, данные, команды. Однако это приводит к снижению скорости передачи информации через интерфейс.

Принцип работы микроконтроллера при автоматизации технологических машин или процессов состоит в выполнение следующего

цикла операций:

1. Сбор сигналов с датчиков;

2. Обработка сигналов согласно прикладному алгоритму управления;

3. Выдача управляющих воздействий на исполнительные устройства.

В нормальном режиме работы микроконтроллер непрерывно выполняет

этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

В отличие от персонального компьютера он рассчитан на решение ограниченного круга задач и должен обладать следующими основными свойствами:

1) работа в режиме реального времени, т.е. обеспечение высокой

реактивности (быстродействия) на запросы обслуживания со стороны объекта управления (обеспечение управления в темпе протекания технологического процесса);

2) повышенные требования к надежности функционирования:

– автоматический перезапуск в случае «зависания» программы;

– конструкция, приспособленная для работы в подземных условиях шахт;

– минимальное потребление энергии и рассеяние тепла в условиях

­ ограниченной мощности источника питания и отсутствия элементов

принудительной вентиляции и охлаждения;

3) модульность архитектуры и возможность встраивания дополнительных блоков управляющей, регистрирующей, сопрягающей аппаратуры, что помимо специальных конструкторских решений обеспечивается использованием стандартных шин и увеличением числа плат расширения.

Программное обеспечение

Основные требования к программному обеспечению для PLC:

­ автономность;

­ поддержка процессов сбора, анализа информации и управления, а также локальных баз данных в реальном времени;

­ возможность дистанционного управления со стороны диспетчерского пункта (уровень SCADA-систем);

­ сетевая поддержка.

Программное обеспечение включает следующие основные компоненты:

­ тестовое программное обеспечение;

­ базовое программное обеспечение;

­ прикладное технологическое программное обеспечение.

Тестовое программное обеспечение. Выполняет тестирование (отладку) отдельных PLC и системы в целом (включая тестирование и диагностику различных конфигураций) и содержит следующие компоненты:

­ программы инициализации и конфигурирования, а также начальные тесты для PLC и сетевых адаптеров (внутреннее программное обеспечение, расположенное в ПЗУ);

­ программы для тестирования PLC через линию связи с компьютером высшего уровня или специализированной наладочной аппаратурой;

­ программы для тестирования, наладки и сбора статистики локальной сети распределенной системы;

­ комплексное тестирование распределенной системы в целом;

­ специализированное тестовое программное обеспечение для наладочных пультов, панелей, стендов, эмуляторов и т.д.

Отладка PLC выполняется с помощью компьютеров или специальных пультов, обеспечивающих доступ к памяти и портам PLC с целью отладки и оперативного ввода данных, уставок, управляющей информации. Отладчик позволяет перевести работу PLC в режим пошагового исполнения внутренних программ, эмулировать подачу внешних сигналов, отслеживать изменения состояний регистров и т. п.

Базовое программное обеспечение . В его состав входят:

­ операционные системы реального времени, управляющие выполнением прикладной технологической программы и устройствами PLC;

­ сетевые программные средства, обеспечивающие информационный обмен между отдельными узлами и возможность дистанционного доступа и управления в распределенной системе.

Прикладное технологическое программное обеспечение . Прикладное технологическое программное обеспечение – это машинно-ориентированые языки (ассемблеры), используемые для разработки прикладных программ, Языки ассемблера представлены в виде перечня команд конкретного микропроцессора. Команды ассемблера включают в себя обычно арифметические и логические операции, средства организации циклов подключения и отключения портов, средства управления прерываниями (запрет/разрешение, установка приоритетов), средства работы с интервалами времени и обработки событий, а также средства для динамической загрузки и запуска программ. Элементами языка являются имена портов ввода-вывода и отдельных их разрядов, имена счетчиков, таймеров и контактов, флаги, а также параметры технологического процесса. Преимуществом языков ассемблера является компактность итогового машинного кода, высокое быстродействие. Недостатком – высокая трудоемкость разработки, большой объем текста, отсутствие сложных математических функций (тригонометрических, логарифмических и т.д.). Для реализации сложных алгебраических вычислений необходимо создавать громоздкие подпрограммы.

Для разработки технологических программ используются следующие средства: редакторы, системы программирования (поддержка тассемблеров и языков высокого уровня, а также языков технологического программирования), средства отладки и тестирования, а также инструментарий для функционально-ориентированных языков программирования, позволяющих с минимальными трудозатратами осуществлять проектирование системы «под ключ».

Современные средства автоматизации проектирования технологических программ позволяют программировать PLC с использованием библиотеки стандартных программных модулей – «алгоблоков»,реализующих типовые алгоритмы управления АСУТП: компараторы, формирователи широтно-импусных сигналов (ШИМ) и др.