В этой статье мы расскажем про глобальные системы позиционирования, разработанные в США, России, ЕС и Китае; объясним, как поддержка технологий глобальной спутниковой навигации реализована в электронных устройствах, а также опишем ключевые и дополнительные функции современных навигационных приемников.

GPS

Система GPS (Global Positioning System) создавалась для применения в военных целях. Она начала работать в конце 80-х - начале 90-х годов, однако до 2000 года искусственные ограничения на определение местоположения существенно сдерживали ее возможности использования в гражданских целях.

После отмены ограничений на точность определения координат ошибка снизилась со 100 до 20 м (в последних поколениях GPS-приёмников при идеальных условиях ошибка не превышает 2 м). Такие условия позволили использовать систему для широкого круга общих и специальных задач:

  • Определение точного местоположения
  • Навигация, движение по маршруту с привязкой к карте на основании реального местоположения
  • Синхронизация времени

Орбиты спутников системы GPS. Пример видимости спутников из одной из точек на поверхности Земли. Visible sat - это число спутников, видимых над горизонтом наблюдателя в идеальных условиях (чистое поле).

ГЛОНАСС

Российский аналог GPS - ГЛОНАСС (глобальная навигационная спутниковая система) - была развёрнута в 1995 году, но в связи с недостаточным финансированием и малым сроком службы спутников она не получила широкого распространения. Вторым рождением системы можно считать 2001 год, когда была принята целевая программа ее развития, благодаря которой ГЛОНАСС возобновил полноценную работу в 2010 году.

Сегодня на орбите работают 24 спутника ГЛОНАСС, они охватывают навигационным сигналом весь земной шар.
Новейшие потребительские устройства используют GPS и ГЛОНАСС как взаимодополняющие системы, подключаясь к ближайшим найденным спутникам, это значительно увеличивает скорость и точность их работы.

Пример: aвтомобильное GPS/ГЛОНАСС-навигационно-связное устройство на базе ОС Android, разработанное командой Promwad по заказу российского конструкторского бюро. Реализована поддержка GSM/GPRS/3G. Устройство автоматически обновляет информацию о дорожной обстановке в режиме реального времени и предлагает водителю оптимальный маршрут с учётом загруженности дорог.

Сейчас на стадии разработки находятся еще две спутниковые системы: европейская Galileo и китайская Compass.

Galileo

Галилео - совместный проект Европейского союза и Европейского космического агентства, анонсированный в 2002 году. Изначально рассчитывали, что уже в 2010 году в рамках этой системы на средней околоземной орбите будут работать 30 спутников. Но этот план не был реализован. Сейчас предположительной датой начала эксплуатации Galileo считается 2014 год. Однако ожидается, что полнофункциональное использование системы начнется не ранее 2020 года.

Compass

Это следующая ступень развития китайской региональной навигационной системы Beidou, которая была введена в эксплуатацию после запуска 10 спутников в конце 2011 года. Сейчас она обеспечивает покрытие в границах Азии и Тихоокеанского региона, но, как ожидается, к 2020 году система станет глобальной.


Сравнение орбит спутниковых навигационных систем GPS, ГЛОНАСС, Galileo и Compass (средняя околоземная орбита - MEO) с орбитами Международной космической станции (МКС), телескопа Хаббл и серии спутников Иридиум (Iridium) на низкой орбите, а также геостационарной орбиты и номинального размера Земли.

Поддержка ГНСС

Поддержка технологи глобальных навигационных спутниковых систем (ГНСС) в электронных устройствах реализуется на базе навигационных приемников, которые могут быть выполнены в различных вариантах:
  • Smart Antenna - модуль, состоящий из керамической антенны и навигационного приемника. Преимущества: компактность, не требует согласования, удешевляет разработку за счет сокращения сроков.
  • MCM (Multi Chip Module) - чип, включающий все компоненты навигационного приемника.
  • OEM - экранированная плата, включающая ВЧ интерфейсный процессор и процессор частот основной полосы (RF-frontend + baseband), SAW-фильтры и обвязку. Это наиболее популярное решение на данный момент.
Навигационный модуль подключается к микроконтроллеру или системе на кристалле по интерфейсу UART/RS-232 или USB.

Ключевые параметры навигационных приемников

Прежде чем навигационный приемник сможет выдавать информацию о местоположении, он должен обладать тремя наборами данных:
  1. Сигналы от спутников
  2. Альманах - информация о приблизительных параметрах орбит всех спутников, а также данные для калибровки часов и характеристики ионосферы
  3. Эфемериды - точные параметров орбит и часов каждого спутника
Характеристика TTFF показывает сколько времени требуется приемнику на поиск сигналов от спутников и определение местоположения. Если приёмник новый, или был выключен на протяжении длительного периода, или был перевезен на большое расстояние с момента последнего включения, время до получения набора необходимых данных и определения места увеличивается.

Производители приемников используют различные методы уменьшения TTFF, включая скачивание и сохранения альманаха и эфемерид по беспроводным сетям передачи данных (т.н. метод Assisted GPS или A-GPS), это быстрее чем извлечение этих данных из сигналов ГНСС.

Холодный старт описывает ситуацию, когда приемнику нужно получение всей информации для определения места. Это может занять до 12 минут.

Теплый старт описывает ситуацию, когда у приемника есть почти вся необходимая информация в памяти, и он определит место в течении минуты.

Одним из ключевых параметров навигационных модулей в мобильных устройствах является энергопотребление. В зависимости от режима работы модуль потребляет различное количество энергии. Фаза поиска спутников (TTFF) характеризуется большим, а слежение меньшим энергопотреблением. Также производители реализуют различные схемы уменьшения энергопотребления, например, путем периодического перевода модуля в режим сна.

Как правило, все модули выдают данные по текстовому протоколу NMEA-0183 , но кроме указанного текстового протокола каждый производитель имеет свой собственный двоичный протокол (Binary), который позволяет изменять конфигурацию модуля под конкретное использование либо получать доступ к дополнительному функционалу, а также доступ к сырым измерениям. Двоичный протокол удобен для использования на микроконтроллерах, т.к. при этом нет необходимости выполнять преобразование из текста в двоичные данные, тем самым экономя программную память путем исключения библиотеки работы со строками и времени на преобразование.

Стандарт NMEA-2000 - это развитие протокола NMEA-0183. В качестве физического уровня в NMEA-2000 используется CAN-шина, которая была выбрана в виду большей защищенности по сравнению с RS-232. С точки зрения протокола передачи данныхNMEA-2000 существенно отличается от своего предшественника, т.к. использует двоичный протокол, базирующийся на стандарте SAE J1939.

Частота обновления данных о местоположении и скорости всех модулей составляет 1 Гц, но при необходимости ее можно поднять до 5 или 10 Гц.

В зависимости от области применения модуль можно сконфигурировать под определенные динамические характеристики , которые он должен отслеживать (например, максимальное ускорение объекта). Это позволяет использовать оптимальный алгоритм и улучшать качество измерений.

Для выполнения навигационной задачи модуль должен одновременно принимать сигналы от нескольких спутников, т.е. иметь несколько приемных каналов . На сегодняшний день это число лежит в диапазоне от 12 до 88.

Точность определения местоположения по GPS составляет в среднем 15 м, она обусловлена используемым неточным сигналом, влиянием атмосферы на распространение радиосигнала, качеством кварцевых генераторов в приемниках и пр. Но с помощью корректирующих методов возможно улучшить точность определения местоположения. Эта технология называется Differential GPS . Существует два метода коррекции: наземный и спутниковый DGPS.

В наземных методах коррекции наземные станции дифференциальных поправок постоянно сверяют свое заведомо известное местоположение и сигналы от навигационных спутников. На базе этой информации вычисляются корректирующие величины, которые могут быть переданы с помощью УКВ- или ДВ-передатчика на мобильные DGPS-приемники в формате RTCM . На основании полученной информации потребитель может корректировать процесс определения собственного местоположения. Точность этого метода составляет 1-3 метра и зависит от расстояния до передатчика корректирующей информации и качества сигнала.

Спутниковые методы, такие как система WAAS (Wide Area Augmentation System), доступная в Северной Америке, и система EGNOS (European Geostationary Navigation Overlay System), доступная в Европе, шлют корректирующие данные с геостационарных спутников, таким образом достигается бо льшая область приема, чем при наземных методах.

Спутниковые системы дифференциальной коррекции (SBAS - Space Based Augmentation Systems) позволяют улучшить точность, надежность и доступность навигационной системы за счет интеграции внешних данных в процессе расчета


Демонстрация принципа работы системы WAAS (Wide Area Augmentation System) на территории США

Одним из основных параметров, влияющих на точность определения местоположения и стабильность приема является чувствительность . Она, как правило, определяется качеством малошумящего усилителя на входе приемника и сложностью реализованных алгоритмов цифровой обработки. Типовые значения современных приемников лежат в диапазоне 143 дБм для поиска и 160 дБм для слежения.

Кроме определения местоположения ГНСС предоставляют информацию о точном времени. Как правило, все приемники имеют выход PPS (pulse per second, импульсов в секунду) - секундная метка (1 Гц), которая точно синхронизирована с временной шкалой UTC.

Дополнительные функции навигационных устройств

Счисление пути . На основе информации о направлении движения и пройденном пути (предоставляется дополнительными датчиками) приемник может рассчитывать свои координаты при отсутствии сигналов от спутников (например, в туннелях, на подземных стоянках и в плотной городской застройке).

Некоторые модули имеют возможность напрямую подключать флэш-память (например, по SPI) к модулю для записи трека c необходимой периодичностью. Эта функция позволяет отказаться от использования отдельного микроконтроллера, либо она может быть полезной для минимизации энергопотребления (т.е. система на кристалле может находиться в состоянии сна).

На этом поверхностный обзор технологий глобальной спутниковой навигации завершен. Спасибо за внимание. Примеры реализованных проектов на базе этих ГЛОНАСС и GPS можно посмотреть на странице

Как известно, большинству из нас, Земля представляется в форме, близкой к шару, но всем известно, что она не шар. Отличие, весьма существенное для точной навигации и системы координат. Сложная поверхность Земли получила еще в 19 веке название геоида. Поверхность геоида совпадает с поверхностью морей и океанов в их спокойном состоянии и виртуально продолжается под материками.

Системы координат для GPS-навигаторов, географические координаты.

Земля, ее форма и координаты.

Для практического применения широкое распространение получили две модели формы Земли: сферическая с упрощенным представлением ее в виде шара с радиусом 6371,1 километра и сфероидальная в виде эллипса вращения (эллипсоида). Под ним понимают геометрическую фигуру, которая образуется при вращении эллипса вокруг своей малой оси. Размеры эллипсоида вращения, его ориентация и расположение относительно центра масс Земли могут варьироваться для достижения наибольшей точности приближения к реальной земной поверхности. Следует уяснить, что каждой используемой модели соответствует и своя система координат.

Когда мы говорим о какой-либо системе координат, то подразумеваем и соответствующую модель эллипсоида. Но и это еще не все различия, которые нужно знать пользователю системы GPS. Если параметры эллипсоида подбираются для Земли в целом, то такой эллипсоид получил название общего земного эллипсоида (ОЗЭ). С целью же описания локальной (частичной) области поверхности Земли с большей точностью может использоваться эллипсоид с другими параметрами.

Такой эллипсоид, законодательно принятый для измерений и обработки геодезических данных, называется референц-эллипсоидом (РЭ), а образуемая им система координат — референцной. В референц-эллипсоиде его малая ось не совпадает с осью вращения Земли, но должна быть параллельна ей. В ОЗЭ малая полуось всегда совпадает с осью вращения, а центр эллипсоида совпадает с центром масс Земли.

На территории СНГ используются две общеземные системы координат, ПЗ-90 и Международная WGS-84 (Wordl Geodetic System 1984). Цифры в обозначении системы указывают на год ее создания. Обе системы близки друг к другу. ПЗ-90 используется на территории СНГ для геодезического обеспечения орбитальных полетов, a WGS-84 применяется во всем мире для обработки спутниковых измерений GPS. К российским референцным системам относятся системы СК-42 (Пулково) и СК-95. Обе системы используют эллипсоид Красовского (введен с 1946 г.) и применяются при выполнении геодезических и картографических работ.

Системы координат для GPS-навигаторов.

При навигации и использовании GPS-навигаторов очень важно понимать, что отображение GPS-позиций на картах с разными системами координат без их пересчета приведет к большим ошибкам. Поэтому используются картографические программы, позволяющие переводить данные, например, из системы WGS-84 в местные системы координат. К счастью, у пользователей портативных GPS-навигаторов этой проблемы вообще нет. При использовании совместно с GPS-навигатором бумажной карты с координатной сеткой необходимо проверить совпадение систем координат карты и навигатора.

При необходимости можно произвести настройку системы координат навигатора, установив в нем параметры, называемые датумом, соответствующие загруженной карте, или выбрав пользовательский датум. Преобразование координат навигатор выполнит тогда автоматически. Датум есть геодезическая система координат, однозначно определяемая размерами своего эллипсоида и его положением по отношению к центру Земли. Число разных датумов, а проще - систем координат, используемых в мировой картографии, более сотни. Разные датумы были предложены с целью получения наилучшего приближения определяемой ими модели к реальной поверхности Земли данного региона.

К примеру, локальный Североамериканский датум NAD-27 разработан для наилучшего представления Северной Америки, а локальный Европейский датум ED-50 создан для использования в Европе. Локальные датумы нельзя применять вне области, для которой они были разработаны. Для удобства пользователя GPS-навигаторов в их память заложены параметры многих датумов, что дает возможность использовать в них электронные карты из разных источников без каких-либо сложностей.

На многих бумажных указана поправка для перехода с системы координат карты к международной WGS-84, в которой работает GPS. Например, чтобы точку, находящуюся в районе Балтийского моря и Ладоги, с координатами по WGS-84 системе нанести на российскую карту, построенную в системе Пулковской обсерватории 1942 года, необходимо сместить это точку на 0,14 минуты к востоку. На широте Петербурга Эта разница соответствует примерно 130 метрам.

Географические координаты.

Для определения положения любого объекта на поверхности Земли используется система из географических координат и двух особых точек — полюсов Северного и Южного. Полюса являются, как известно, точками пересечения оси вращения Земли с поверхностью эллипсоида. Наиболее наглядно географические координаты представляются в сферической модели Земли. В ней географические координаты, широта и долгота, определяются с помощью окружностей, образующихся при сечении шаровидной модели Земли плоскостями: для широты - в горизонтальном направлении, а для долготы - в вертикальном.

Окружность EQ, образуемая на поверхности шара горизонтальной секущей плоскостью, перпендикулярной земной оси и проходящей через центр шара, называется экватором. Он делит земной шар на северное и южное полушария. Окружности малых кругов, плоскости которых параллельны плоскости экватора, образуют параллели (РР). Окружности, образуемые плоскостями, проходящими через земную ось, получили название меридианов (географических или истинных). Среди всех меридианов надо выделить начальный (нулевой) PnGPs, называемый гринвичским, поскольку он проходит через астрономическую обсерваторию в Гринвиче (Англия). Этот меридиан делит земной шар на восточное и западное полушария.

Географическая широта.

Географической широтой некоторой точки на поверхности земного сфероида называется угол между плоскостью экватора и нормалью (отвесной линией) к этой поверхности. Для модели Земли в виде шара нормаль совпадает с земным радиусом ОМ, проведенным через данную точку М в центр шара. Широта измеряется дугой меридиана (угол МОЛ) от экватора до параллели данной точки. Широта принимает значения в диапазоне от 0 до 90 градусов. Если точка находится в северном полушарии, то широте приписывают наименование N (северное), если в южном - S.

Географическая долгота.

Географической долготой какой-либо точки называется двугранный угол между плоскостями начального (нулевого) меридиана и меридиана, проходящего через заданную точку. Так, долгота точки М определяется углом GOL. Долгота измеряется меньшей дугой экватора GL, а, к примеру, не дугой GEQL. Счет долгот ведут к востоку или западу от начального меридиана, от 0 до 180 градусов.

Если точка находится в восточном полушарии, то долготе приписывает наименование Е (восточная), если в западном - W (западная). Иногда, для обозначения полушарий точки, в координатах используются знаки +/-. Причем знак минус приписывают координатам, находящимся в южном и западном полушариях. Для географических координат в GPS-навигаторах используются следующие форматы:

— ddd.mm.ss.s — градусы, минуты, секунды,
— ddd.dddd — градусы, десятичные доли градусов,
— ddd.mm.mmm — градусы, минуты, десятичные доли минут.

По материалам книги «Все о GPS-навигаторах».
Найман В.С., Самойлов А.Е., Ильин Н.Р., Шейнис А.И.

Спутниковая навигация GPS давно уже является стандартом для создания систем позиционирования и активно применяется в различных трекерах и навигаторах. В проектах Arduino GPS интегрируется с помощью различных модулей, не требующих знания теоретических основ. Но настоящему инженеру должно быть интересно разобраться со принципом и схемой работы GPS, чтобы лучше понимать возможности и ограничения этой технологии.

Схема работы GPS

GPS – это спутниковая навигационная система, разработанная Министерством обороны США, которая определяет точные координаты и время. Работает в любой точке Земли в любых погодных условиях. GPS состоит из трех частей – спутников, станций на Земле и приемников сигнала.

Идея создания спутниковой навигационной системы зародилась еще в 50-е годы прошлого столетия. Американская группа ученых, наблюдающая за запуском советских спутников, заметила, что при приближении спутника частота сигнала увеличивается и уменьшается при его отдалении. Это позволило понять, что возможно измерить положение и скорость спутника, зная свои координаты на Земле, и наоборот. Огромную роль в развитии навигационной системы сыграл запуск спутников на низкую околоземную орбиту. А в 1973 году была создана программа «DNSS» («NavStar»), по этой программе спутники запускались на среднюю околоземную орбиту. Название GPS программа получила в том же 1973 году.

Система GPS на данный момент используется не только в военной области, но и в гражданских целях. Сфер применения GPS много:

  • Мобильная связь;
  • Тектоника плит – происходит слежение за колебаниями плит;
  • Определение сейсмической активности;
  • Спутниковое отслеживание транспорта – можно проводить мониторинг за положением, скоростью транспорта и контролировать их движение;
  • Геодезия – определение точных границ земельных участков;
  • Картография;
  • Навигация;
  • Игры, геотегинт и прочие развлекательные области.

Важнейшим недостатком системы можно считать невозможность получения сигнала при определенных условиях. Рабочие частоты GPS лежат в дециметровом диапазоне волн. Это приводит к тому, что уровень сигнала может снизиться из-за высокой облачности, плотной листвы деревьев. Радиоисточники, глушилки, а в редких случаях даже магнитные бури также могут мешать нормальной передаче сигнала. Точность определения данных будет ухудшаться в приполярных районах, так как спутники невысоко поднимаются над Землей.

Навигация без GPS

Поправки в полученные уравнения вносит расхождение между расчетным и фактическим положением спутника. Погрешность, которая возникает в результате этого, называется эфемеридной и составляет от 1 до 5 метров. Также свой вклад вносят интерференция, атмосферное давление, влажность, температура, влияние ионосферы и атмосферы. Суммарно совокупность всех ошибок может довести погрешность до 100 метров. Некоторые ошибки можно устранить математически.

Чтобы уменьшить все погрешности, используют дифференциальный режим GPS. В нем приемник получает по радиоканалу все необходимые поправки к координатам от базовой станции. Итоговая точность измерения достигает 1-5 метров. При дифференциальном режиме существует 2 метода корректировки полученных данных – это коррекция самих координат и коррекция навигационных параметров. Первый метод использовать неудобно, так как все пользователи должны работать по одним и тем же спутникам. Во втором случае значительно увеличивается сложность самой аппаратуры для определения местоположения.

Существует новый класс систем, который увеличивает точность измерения до 1 см. Огромное влияние на точность оказывает угол между направлениями на спутники. При большом угле местоположение будет определяться с большей точностью.

Точность измерения может быть искусственно снижена Министерством обороны США. Для этого на устройствах навигации устанавливается специальный режим S/A – ограниченный доступ. Режим разработан в военных целях, чтобы не дать противнику преимущества в определении точных координат. С мая 2000 года режим ограниченного доступа был отменен.

Все источники ошибок можно разделить на несколько групп:

  • Погрешность в вычислении орбит;
  • Ошибки, связанные с приемником;
  • Ошибки, связанные с многократным отражением сигнала от препятствий;
  • Ионосфера, тропосферные задержки сигнала;
  • Геометрия расположения спутников.

Основные характеристики

В систему GPS входит 24 искусственных спутника Земли, сеть наземных станций слежения и навигационные приемники. Станции наблюдения требуются для определения и контроля параметров орбит, вычисления баллистических характеристик, регулировка отклонения от траекторий движения, контроль аппаратуры на бору космических аппаратов.

Характеристики навигационных систем GPS :

  • Количество спутников – 26, 21 основной, 5 запасных;
  • Количество орбитальных плоскостей – 6;
  • Высота орбиты – 20000 км;
  • Срок эксплуатации спутников – 7,5 лет;
  • Рабочие частоты – L1=1575,42 МГц; L2=12275,6МГц, мощность 50 Вт и 8 Вт соответственно;
  • Надежность навигационного определения – 95%.

Навигационные приемники бывают нескольких типов – портативные, стационарные и авиационные. Приемники также характеризуются рядом параметров:

  • Количество каналов – в современных приемников используется от 12 до 20 каналов;
  • Тип антенны;
  • Наличие картографической поддержки;
  • Тип дисплея;
  • Дополнительные функции;
  • Различные технические характеристики – материалы, прочность, защита от влаги, чувствительность, объем памяти и другие.

Принцип действия самого навигатора – в первую очередь устройство пытается связаться с навигационным спутником. Как только связь будет установлена, происходит передача альманаха, то есть информации об орбитах спутников, находящихся в рамках одной навигационной системы. Связи с одним только спутником недостаточно для получения точного местоположения, поэтому оставшиеся спутники передают навигатору свои эфемериды, необходимые для определения отклонений, коэффициентов возмущения и других параметров.

Холодный, теплый и горячий старт GPS навигатора

Включив навигатор впервые или после долгого перерыва, начинается долгое ожидание для получения данных. Долгое время ожидания связано с тем, что в памяти навигатора отсутствуют либо устарели альманах и эфемериды, поэтому устройство должно выполнить ряд действий по получению или обновлению данных. Время ожидания, или так называемое время холодного старта, зависит от различных показателей – качество приемника, состояние атмосферы, шумы, количество спутников в зоне видимости.

Чтобы начать свою работу, навигатор должен:

  • Найти спутник и установить с ним связь;
  • Получить альманах и сохранить его в памяти;
  • Получить эфемериды от спутника и сохранить их;
  • Найти еще три спутника и установить с ними связь, получить от них эфемериды;
  • Вычислить координаты при помощи эфемерид и местоположения спутников.

Только пройдя весь этот цикл, устройство начнет работать. Такой запуск и называется холодным стартом .

Горячий старт значительно отличается от холодного. В памяти навигатора уже имеется актуальный на данный момент альманах и эфемериды. Данные для альманаха действительны в течение 30 дней, эфемерид – в течение 30 минут. Из этого следует, что устройство выключалось на непродолжительное время. При горячем старте алгоритм будет проще – устройство устанавливает связь со спутником, при необходимости обновляет эфемериды и вычисляет местоположение.

Существует теплый старт – в этом случае альманах является актуальным, а эфемериды нужно обновить. Времени на это затрачивается немного больше, чем на горячий старт, но значительно меньше, чем на холодный.

Ограничения на покупку и использование самодельных модулей GPS

Российское законодательство требует от производителей уменьшать точность определения приемников. Работать с незагрубленной точностью может производиться только при наличии у пользователя специализированной лицензии.

Под запретом в Российской Федерации находятся специальные технические средства, предназначенные для негласного получения информации (СТС НПИ). К таковым относятся GPS трекеры, которые используются для негласного контроля над перемещением транспорта и прочих объектов. Основной признак незаконного технического средства – его скрытность. Поэтому перед приобретением устройства нужно внимательно изучить его характеристики, внешний вид, на наличие скрытых функций, а также просмотреть необходимые сертификаты соответствия.

Также важно, в каком виде продается устройство. В разобранном виде прибор может не относиться к СТС НПИ. Но при сборе готовое устройство уже может относиться к запрещенным.

Мы каждый день пользуемся системами навигации. Кому-то нужно проложить маршрут в незнакомое место, кто-то ищет новые пути дом-работа-дом, кто-то просто страдает топографическим кретинизмом. Мы редко задумываемся о том, как это работает и вспоминаем, что это как-то связано со спутниками только тогда, когда все рьяно тупит и маршрут не строится. А все же, как это работает и нужен ли для корректной работы GPS Интернет?

Нет, Интернет не нужен. С этим разобрались. На самом деле, вокруг нашей планеты кружит 24 спутника (запущено почти 60, но не все уже в работе), с помощью которых каждый из нас может определить свое местоположение. У каждого спутника есть своя орбита, и за космические сутки (23 часа 56 минут) он успевает облететь Землю два раза. И все же, как люди додумались до создания спутниковой системы?

В 80-х российские учёные занялись разработкой системы навигации по спутникам, которую в будущем назовут “ГЛОНАСС”. Первый спутник со стороны России был запущен в 1982 году, но идея не взлетела, потому что финансирование закончилось. Зато в это время подсуетились в США, заметив, что их соперник уже во всю выводит что-то на орбиту. Их проект начался еще в 1973 году, но шел неспешно, не торопясь, а после того, как “противник” вплотную занялся делом, американцы до 1993 года быстренько вывели на орбиту Земли 24 спутника и покрыли всю площадь планеты сигналом. Изначально, GPS задумывался исключительно как военная технология, но в процессе работы над проектом было решено дать возможность каждому использовать систему. Для этого абсолютная точность наведения была изменена с помощью специального алгоритма.

Принцип работы

24 спутника на высоте около 20 тысяч километров, вокруг планеты они расположены так, что в любой момент времени из любой точки Земли точно видно 4 спутника, максимум их может быть видно 12. В каждом спутнике имеются атомные часы, точность которых определена до наносекунд. Любой объект на Земле или над ней (самолеты, к примеру) определяют свое положение в зависимости от получаемых сигналов времени от разных спутников. Расстояние от трех спутников определяет точку на земном шаре. Для корректного определения вашего местоположения необходимы как минимум 3 спутника, но чем их больше, тем точность выше. Три сигнала дают нам три точки, вокруг которых мы можем начертить воображаемую сферу с радиусом, равным расстоянию до объекта. Пересечение двух сфер дает окружность возможных положений искомого объекта, а наличие третьей сферы дает возможность свести данные до одной конкретной точки – вашего местоположения. В целом каждое устройство с GPS-приемником ориентируется на данные от 3 до 12 спутников. Когда пользователь задает запрос (в машине, в смартфоне, просто gps-навигатор), он получает “ответочку” от трех-четырех и больше спутников с орбиты. Сигнал содержит данные о координатах спутника и времени на его часах. Получая сигналы из разных источников, учитывая разницу времени на Земле и в космосе, зная скорость передачи радиоволн, приемник рассчитывает с помощью уравнения расстояние до спутника (называется она псевдодальность) и, анализируя данные, определяет точное местоположение. Таким образом каждый человек может прокладывать маршруты и находить себя в пространстве в режиме реального времени.

Интересным моментом в работе GPS является вопрос коррекции времени. Ведь точность в вопросах определения геолокации важна, особенно если речь идет о военной технологии, пусть она и стала общественным достоянием. Для корректной работы спутников была учтена теория относительности. Из-за того, что с Земли мы видим спутники в движении, специальная теория относительности утверждает, что часы на них должны идти медленнее на 7 микросекунд из-за меньшей скорости хода времени. Кроме того, положение спутника относительно Земли заставило ученых брать в расчет кривизну пространства и времени, ведь масса планеты меньше влияет на часы на спутнике, чем на ее территории (ход часов, расположенных ближе к массивному объекту, кажется медленнее, чем часов, находящихся дальше от объекта). Короче говоря, с Земли кажется, что время на спутнике идет медленнее с разницой в 38 миллисекунд в сутки. Ведь даже разность данных на 20 наносекунд привела бы к погрешностям в вычислениям геолокации каждые пару минут, и эта ошибка накапливалась бы. К примеру, за день точность определения местоположения объектов сбилась бы приблизительно на 10 км!

Конечно, погрешности имеются. Каждый знает, что сигнал очень плохо считывается в помещении, ведь он плохо проходит через бетонные стены и металлические укрепления, в тоннеле или подвале не принимается совсем. Даже повышенная облачность может сбить точность информации. К тому же, если часы вашего GPS идут неверно, это тоже может привести к неправильным результатам.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .