Все мастера, занимающиеся ремонтом электронной аппаратуры, знают о важности наличия лабораторного блока питания, с помощью которого можно получать различные значения напряжения и тока для использования при зарядке устройств, питании, тестировании схем и т. д. В продаже имеется много разновидностей таких аппаратов, но опытным радиолюбителям вполне по силам изготовить лабораторный блок питания своими руками. Использовать для этого можно бывшие в употреблении детали и корпуса, дополнив их новыми элементами.

Простое устройство

Самый простой блок питания состоит всего из нескольких элементов. Начинающим радиолюбителям будет несложно разработать и собрать эти легкие схемы. Главный принцип – создать выпрямительную схему для получения постоянного тока. При этом уровень напряжения на выходе меняться не будет, он зависит от коэффициента трансформации.

Основные компоненты для схемы простого блока питания:

  1. Понижающий трансформатор;
  2. Выпрямительные диоды. Можно включить их по схеме моста и получить полноволновое выпрямление либо использовать полуволновое устройство с одним диодом;
  3. Конденсатор для сглаживания пульсаций. Выбирается электролитический тип емкостью 470-1000 мкФ;
  4. Проводники для монтажа схемы. Их поперечное сечение определяется величиной нагрузочного тока.

Для конструирования 12-вольтового БП нужен трансформатор, который понижал бы напряжение с 220 до 16 В, так как после выпрямителя напряжение немного уменьшается. Такие трансформаторы можно найти в бывших в употреблении компьютерных блоках питания или приобрести новые. Можно встретить рекомендации о самостоятельной перемотке трансформаторов, но на первых порах лучше обойтись без этого.

Диоды подойдут кремниевые. Для устройств небольших по мощности есть в продаже уже готовые мосты. Важно их правильно подсоединить.

Это основная часть схемы, пока еще не совсем готовая к использованию. Надо поставить дополнительно после диодного моста стабилитрон для получения лучшего выходного сигнала.

Получившееся устройство является обычным блоком питания без дополнительных функций и способно поддерживать небольшие нагрузочные токи, до 1 А. При этом возрастание тока может повредить компоненты схемы.

Чтобы получить мощный блок питания, достаточно в этой же конструкции установить один или более усилительных каскадов на транзисторных элементах TIP2955.

Важно! Для обеспечения температурного режима схемы на мощных транзисторах необходимо предусмотреть охлаждение: радиаторное или вентиляционное.

Регулируемый блок питания

Блоки питания с регулировкой по напряжению помогут решать более сложные задачи. Имеющиеся в продаже устройства различаются по параметрам регулирования, показателям мощности и др. и подбираются с учетом планируемого использования.

Простой регулируемый блок питания собирается по примерной схеме, представленной на рисунке.

Первая часть схемы с трансформатором, диодным мостом и сглаживающим конденсатором похожа на схему обычного БП без регулирования. В качестве трансформатора также можно использовать аппарат из старого блока питания, главное, чтобы он соответствовал выбранным параметрам по напряжению. Этот показатель для вторичной обмотки ограничивает регулирующий предел.

Как работает схема:

  1. Выпрямленное напряжение выходит к стабилитрону, который определяет максимальную величину U (можно взять на 15 В). Ограниченные параметры этих деталей по току требуют установки в схему транзисторного усилительного каскада;
  2. Резистор R2 является переменным. Меняя его сопротивление, можно получить разные величины выходного напряжения;
  3. Если регулировать также ток, то второй резистор устанавливается после транзисторного каскада. В данной схеме его нет.

Если требуется другой диапазон регулирования, надо установить трансформатор с соответствующими характеристиками, что потребует также включения другого стабилитрона и т. д. Для транзистора необходимо радиаторное охлаждение.

Измерительные приборы для простейшего регулируемого блока питания подойдут любые: аналоговые и цифровые.

Соорудив регулируемый блок питания своими руками, можно применять его для устройств, рассчитанных на различные значения рабочего и зарядного напряжения.

Двухполярный блок питания

Устройство двуполярного блока питания более сложное. Заниматься его конструированием могут опытные электронщики. В отличие от однополярных, такие БП на выходе обеспечивают напряжение со знаком «плюс» и «минус», что необходимо при питании усилителей.

Хотя изображенная на рисунке схема является простой, ее исполнение потребует определенных навыков и знаний:

  1. Потребуется трансформатор со вторичной обмоткой, разделенной на две половины;
  2. Одними из главных элементов служат интегральные транзисторные стабилизаторы: КР142ЕН12А – для прямого напряжения; КР142ЕН18А – для обратного;
  3. Для выпрямления напряжения используется диодный мост, можно его собрать на отдельных элементах или применить готовую сборку;
  4. Резисторы с переменным сопротивлением участвуют в регулировании напряжения;
  5. Для транзисторных элементов обязательно монтировать радиаторы охлаждения.

Двухполярный лабораторный блок питания потребует установки также контролирующих приборов. Сборка корпуса производится в зависимости от габаритов устройства.

Защита блока питания

Самый простой метод защиты БП – установка предохранителей с плавкими вставками. Есть предохранители с самостоятельным восстановлением, не требующие замены после перегорания (их ресурс ограничен). Но они не обеспечивают полноценной гарантии. Зачастую происходит повреждение транзистора до перегорания предохранителя. Радиолюбители разработали различные схемы с применением тиристоров и симисторов. Варианты можно найти в сети.

Для изготовления кожуха устройства каждый мастер использует доступные ему способы. При достаточном везении можно найти готовое вместилище для прибора, но все равно придется менять конструкцию фронтальной стенки, чтобы поместить туда контролирующие приборы и регулирующие ручки.

Некоторые идеи для изготовления:

  1. Измерить габариты всех компонентов и вырезать стенки из алюминиевых листов. На фронтальной поверхности нанести разметку и проделать необходимые отверстия;
  2. Скрепить конструкцию уголком;
  3. Нижнее основание БП с мощными трансформаторами должно быть усилено;
  4. Для внешней обработки прогрунтовать поверхность, покрасить и закрепить лаком;
  5. Схемные компоненты надежно изолируются от внешних стенок во избежание появления напряжения на корпусе при пробое. Для этого возможно проклеить стенки изнутри изолирующим материалом: толстым картоном, пластиком и т. д.

Многие устройства, особенно большой мощности, требуют установки охлаждающего вентилятора. Его можно сделать с функционированием в постоянном режиме либо изготовить схему автоматического включения и выключения по достижении заданных параметров.

Схема реализуется установкой термодатчика и микросхемы, обеспечивающей управление. Чтобы охлаждение было эффективным, необходим свободный доступ воздуха. Значит, задняя панель, около которой монтируют кулер и радиаторы, должна иметь отверстия.

Важно! Во время сборки и ремонта электротехнических устройств надо помнить об опасности поражения электрическим током. Конденсаторы, находившиеся под напряжением, разряжать обязательно.

Собрать качественный и надежный лабораторный блок питания своими руками возможно, если использовать исправные компоненты, четко просчитывать их параметры, пользоваться проверенными схемами и необходимыми приборами.

Видео

В очередной раз встает вопрос о переделке компьютерного блока питания. На этот раз в двухполярный источник питания. Возникла нужда в таком источнике питания для усилителя. Но железный трансформатор мотать не хочется, а сборка с нуля импульсного блока питания занимает слишком много времени. Вот и было решено получить нужное напряжение из компьютерного блока питания. Сам источник питания был необходим для усилителя на микросхеме TDA7294.

И стоит заметить, что многие начинающие радиотехники сталкиваются с такой проблемой – собрали усилитель, но не могут определиться с блоком питания.

На самом деле это сложно назвать переделкой, поскольку компьютерный блок питания без всяких разных переделок может отдавать нужное напряжение для подобных целей. И для этого прежде всего необходимо раздобыть рабочий блок питания абсолютно любой мощности и формата.

Про силовые шины и выходные напряжения должно быть все понятно из следующего рисунка:

По идее, необходимо соединить зеленый провод с любым из черных, чтобы запустить блок питания.

Затем нужно взять пару многожильных проводов и припаять их к тем выводам трансформатора, которые изображены на рисунке ниже:

Ничего сложного! А вся хитрость в том, что в компьютерном блоке питания все выпрямители однополярного типа со средней точкой.

То есть все обмотки, по сути, двухполярные, и если использовать концы этих обмоток и пустить их на отдельный диодный выпрямитель, то можно получить напряжение в 2 раза больше, чем с однополярным выпрямителем, который задействован в компьютерном блоке питания.

Земля блока питания останется самой собой и в этом случае, то есть средней точкой.

Остается подобрать только диодный мост.

В предлагаемом варианте необходимо использовать диоды с обратным напряжением не меньше 100 В. Они обязательно должны быть импульсного типа. Можно также задействовать диоды Шоттки.

Идеальным вариантом являются отечественные КД213. Они довольно мощные и к тому же без проблем работают на таких частотах.

После переделки получается двухполярное напряжение, а если быть точнее, двухполярные 30 В. Это как раз то, что нужно для микросхем типа TDA7294.

И самое важное – будет работать защита. При коротком замыкании блок попросту уйдет в защиту. Чтобы снять ее, необходимо на короткое время разъединить зеленый и черный провода, а затем соединить снова. Если блок будет постоянно использоваться, то стоит поставить выключатель.

В зависимости от блока питания 12-вольтовые шины на трансформаторе могут быть с разных сторон, поэтому, чтобы не путаться, необходимо отследить путь желтого выходного провода и найти диодную сборку на шине 12 В.

Потом нужно припаять провода к крайним выводам этой сборки.

Не будет работать только стабилизация, но, в принципе, для питания усилителя она вовсе не нужна.

Как сделать простой Повер Банк своими руками: схема самодельного power bank Схема импульсного зарядного устройства для автомобильного аккумулятора своими руками Паяем штекер к экранированному аудио кабелю

Лабораторный двухполярный блок питания с раздельной регулировкой напряжения от 0 до 30В по каждому каналу и уровнем ограничения по току от 0 до 2А с индикацией режима ограничения

ВНИМАНИЕ!!! Входное напряжение постоянного тока от 14 до 35 В. Эксперимент показал, что при Uвх=35В максимальные выходные токи для указанных на схеме транзисторов составляют: при Uвых=3В/Iвых=0,2А; при Uвых=30В/2А поскольку мощность рассеиваемая коллектором 2Вт без радиатора и порядка 8Вт с радиатором. Увеличить выходные токи можно применив транзисторы TIP147/TIP142 или можно уменьшить входное напряжение. Можно применить переключение отводов вторичной обмотки трансформатора, т.е. можно сделать несколько отводов. Но Uвх=35В это максимум! Блок питания отлично работает при Uвх порядка 24В, поэтому я рекомендовал бы использовать его при входных напряжениях не более 24В;-((это моё мнение и может не совпадать с авторами схемы)

Печатные платы с маской и маркировкой:

Лабораторный двухполярный стабилизированный блок питания с раздельной регулировкой напряжения в диапазоне от 0 до 30 В и тока в диапазоне от 0 до 2 А с функцией ограничения тока и индикацией режима ограничения по току для каждого канала. Диапазон входных напряжений от 14 до 35 В. Плата выполнена таким образом, что переменные резисторы можно закрепить непосредственно на передней панели блока питания при помощи штатных гаек переменных резисторов, расстояния между переменными резисторами выбраны с учётом удобства эксплуатации. Между переменными резисторами канала 30 мм, а между крайними переменными резисторами каналов 40 мм, что очень удобно, в отличие от предлагаемых на рынке. Возможные места установки монтажных стоек приведены на фотографиях ниже (стойки и радиатор в комплект набора не входят и при необходимости заказываются отдельно) . Подключение выполняется через винтовые клеммники.

Стоимость печатной платы с маской и маркировкой: временно закончились

Стоимость набора для сборки блока питания: временно отсутствует в продаже

Краткое описание, комплектация и схема

Сегодня стали доступны готовые модули импульсных стабилизаторов напряжения на микросхеме LM2596.

Заявлены довольно высокие параметры, а стоимость готового модуля меньше стоимости входящих в него деталей. Прельщают малые размеры платы.
Я решил приобрести несколько штук и испытать их. Надеюсь, мой опыт будет полезен не слишком опытным радиолюбителям.

Я купил на ebay модули , как на фото выше. Хотя на сайте были показаны твердотельные конденсаторы на напряжение 50 В, аукцион оправдал своё имя. Конденсаторы обычные, а половина модулей с конденсаторами на напряжение 16 В.

... это трудно назвать стабилизатором...

Можно подумать, что достаточно взять трансформатор, диодный мост, подключить к ним модуль, и перед нами стабилизатор с выходным напряжением 3…30 В и током до 2 А (кратковременно до 3 А).
Я так и сделал. Без нагрузки всё было хорошо. Трансформатор с двумя обмотками по 18 В и обещанным током до 1,5 А (провод на глаз был явно тонковат, так оно и оказалось).
Мне нужен был стабилизатор +-18 В и я выставил нужное напряжение.
При нагрузке 12 Ом ток 1,5 А, вот осциллограмма, 5 В /клетка по вертикали.

Это трудно назвать стабилизатором.
Причина проста и понятна: конденсатор на плате 200 мкФ, он служит только для нормальной работы DC-DC преобразователя. При подаче на вход напряжения от лабораторного блока питания, всё было нормально. Выход очевиден: надо питать стабилизатор от источника с малыми пульсациями, т. е. добавить после моста ёмкость.

Вот напряжение при нагрузке 1,5 А на входе модуля без дополнительного конденсатора.


С дополнительным конденсатором 4700 мкФ на входе, пульсации на выходе резко уменьшились, но при 1,5 А были ещё заметны. При уменьшении выходного напряжения до 16 В, идеальная прямая линия (2 В /клетка).


Падение напряжения на модуле DC-DC должно быть минимум 2…2,5 В.

Теперь можно смотреть пульсации на выходе импульсного преобразователя.


Видны небольшие пульсации с частотой 100 Гц промодулированные частотой несколько десятков кГц. Datasheet на 2596 рекомендует дополнительный LC фильтр на выходе. Так мы и сделаем. В качестве сердечника я использовал цилиндрический сердечник от неисправного БП компьютера и намотал обмотку в два слоя проводом 0,8 мм.


На плате красным цветом показано место для установки перемычки – общего провода двух каналов, стрелкой – место для припаивания общего провода, если не использовать клеммы.

Посмотрим, что стало с ВЧ-пульсациями.


Их больше нет. Остались небольшие пульсации с частотой 100 Гц.
Неидеально, но неплохо.
Замечу, что при увеличении выходного напряжения, дроссель в модуле начинает дребезжать и на выходе резко растёт ВЧ-помеха, стоит напряжение чуть уменьшить (всё это при нагрузке 12 Ом), помехи и шум полностью пропадают.

Для монтажа модуля я применил самодельные «стойки» из луженого провода диаметром 1 мм.


Это обеспечило удобный монтаж и охлаждение модулей. Стойки можно сильно нагревать при пайке, они не сместятся в отличие от простых штырей. Эта же конструкция удобна, если надо припаять к плате внешние провода – хорошая жесткость и контакт.
Плата позволяет легко заменить при необходимости модуль DC-DC.

Общий вид платы с дросселями от половинок какого-то ферритового сердечника (индуктивность не критична).

Итоговая схема включения:

Схема проста и очевидна.

При длительной нагрузке током 1 А детали заметно нагреваются: диодный мост, микросхема, дроссель модуля, больше всего дроссель (дополнительные дроссели холодные). Нагрев на ощупь 50 градусов.

При работе от лабораторного блока питания, нагрев при токах 1,5 и 2 А терпимый в течение нескольких минут. Для длительной работы с большими токами желателен теплоотвод на микросхему и дроссель большего размера.

Несмотря на крошечные размеры модуля DC-DC, общие размеры платы получились соизмеримыми с платой аналогового стабилизатора.

Выводы:

1. Необходим трансформатор с сильноточной вторичной обмоткой или с запасом по напряжению, в этом случае ток нагрузки может превышать ток обмотки трансформатора.

2. При токах порядка 2 А и более желателен небольшой теплоотвод на диодный мост и микросхему 2596.

3. Конденсатор питания желателен большой ёмкости, это благоприятно сказывается на работе стабилизатора. Даже крупная и качественная ёмкость немного нагревается, следовательно желательно малое ESR.

4. Для подавления пульсаций с частотой преобразования, LC фильтр на выходе необходим.

5. Данный стабилизатор имеет явное преимущество перед обычным компенсационным в том, что может работать в широком диапазоне выходных напряжений, при малых напряжениях можно получить на выходе ток больше, чем может обеспечить трансформатор.

6. Модули позволяют сделать блок питания с неплохими параметрами просто и быстро, обойдя подводные камни изготовления плат для импульсных устройств, то есть хороши для начинающих радиолюбителей.

21.06.2015

Этот двухполярный блок питания имеет симметричный выход +12В и -12В с током до 100мА. Он был построен для питания 3-х операционных усилителей OPA627 моего аудио ЦАП-а на чипах PCM1792 и PCM1794.

Описание схемы

Схема имеет в первичной цепи только один предохранитель. Я не смог найти меньше, чем 50мА. Мы можем подключить шнур питания непосредственно к разъему X1 или с помощью выключателя питания на шасси. Ко вторичной обмотке трансформатора подключены два предохранителя по 100 мА и после них идет выпрямительный мост. Конденсаторы C1 и C2 для сглаживания пульсаций выпрямленного напряжения.

Далее идут положительный и отрицательный интегральные стабилизаторы напряжения 78L12 и 79L12 с конденсаторами развязки С3-С6, припаянных близко к выводам стабилизаторов. Далее идут небольшие конденсаторы фильтра, а также сигнальные светодиоды, подключенные через резисторы. Выходные напряжения выведены на 3-х контактный разъем. Для сигнализации наличия напряжения достаточен только один светодиод. Также можно использовать 2-х контактные разъемы для подключения светодиодов.

Монтаж

Сначала мы проверяем, все ли отверстия просверлены правильно. Припаиваем детали в порядке от малогабаритных к крупным. Начинаем с резисторов, небольших конденсаторов, светодиодов, регуляторов, предохранителей и выпрямителя. Далее – разъемы, трансформатор и большие конденсаторы. Будьте внимательны с полярностью электролитических конденсаторов, ориентацией диодов и стабилизаторов.

Печатная плата

Плата односторонняя. Это позволит сделать ее в любительских условиях. Я постарался спроектировать ее симметрично.

Если напряжение на больших конденсаторах не выше14.5В, то следует использовать трансформатор с вторичными обмотками 2 х 15В, чтобы получить 12В на выходе. При использовании светодиодов с током 2мА, следует увеличить номинал резисторов до 1.5кОм.

Правильно собранный блок не нуждается в наладке и работает при первом же включении.
Если требуется другое напряжение, например +/- 15В, то надо заменить трансформатор и стабилизаторы, а также обратить внимание на допустимое рабочее напряжение электролитических конденсаторов.

И ещё хочу отметить один момент, если у вас автомобиль RENAULT Duster и вы хотите немного его усовершенствовать или сделать так сказать тюнинг, то есть отличный ресурс, который поможет вам в этом плане. Заходите, смотрите и выбирайте, много чего интересного.